AIR SEPARATION PROCESSES USING ZEOLITE ITQ-55

    公开(公告)号:US20230182066A1

    公开(公告)日:2023-06-15

    申请号:US17814931

    申请日:2022-07-26

    Abstract: This disclosure relates to the adsorption and separation of fluid components, such as oxygen, in a feed stream, such as air, using zeolite ITQ-55 as the adsorbent. A process is disclosed for adsorbing oxygen from a feed stream containing oxygen, nitrogen and argon. The process comprises passing the feed stream through a bed of an adsorbent comprising zeolite ITQ-55 to adsorb oxygen from the feed stream, carrying out an equalization step to improve recovery, thereby producing a nitrogen product stream depleted in oxygen as well as a waste stream can be collected to have enriched oxygen. The kinetic selectivity and related mass transfer rates can be tuned by varying the mean crystal particle size of zeolite ITQ-55 within the range of from about 0.1 microns to about 40 microns, or by varying the adsorption temperature within the range from about -195° C. to about 30° C., or by varying the adsorption pressure within the range from about 1 bar (~14.7 psi) to about 30 bar (~435 psi), or combinations thereof. The feed stream is exposed to the zeolite ITQ-55 at effective conditions for performing a rapid cycle of kinetic separation, in which oxygen exhibits greater kinetic selectivity than nitrogen and argon.

    METHODS OF USING AND CONVERTING RECOVERED RADIUM

    公开(公告)号:US20230181775A1

    公开(公告)日:2023-06-15

    申请号:US18056415

    申请日:2022-11-17

    Inventor: Deepak MUSALE

    Abstract: Methods of performing targeted alpha therapy of a cancer patient utilizing actinium-225, methods of preparing a targeted alpha therapy drug that includes actinium-225, methods of preparing actinium-225 from radium-226, and methods of recovering radium-226 from an aqueous produced material stream generated from a natural resource extraction process. The methods of recovering radium-226 include separating the radium-226 from the produced material stream to generate recovered radium-226. The methods of preparing actinium-225 include converting the recovered radium-226 into actinium-225. The methods of preparing the targeted alpha therapy drug include incorporating the actinium-225 into the targeted alpha therapy drug. The methods of performing targeted alpha therapy include treating the cancer patient with the targeted alpha therapy drug.

    Methods of compositional analysis of algal biomass

    公开(公告)号:US11674934B2

    公开(公告)日:2023-06-13

    申请号:US17142786

    申请日:2021-01-06

    CPC classification number: G01N31/12 G01N2333/405

    Abstract: The present disclosure relates to methods for compositional analysis of algal biomass, specifically weight percent elemental composition. In at least one embodiment, a method for compositional analysis of an algae sample includes flash combusting a first portion of the algae sample to provide a carbon wt %, a hydrogen wt %, and a nitrogen weight %. The method includes pyrolysing a second portion of the algae sample to provide an oxygen wt %. The method includes scanning a third portion of the algae sample using x-ray fluorescence to provide an elemental intensity. The method includes normalizing the elemental intensity using the carbon wt %, the hydrogen wt %, the nitrogen wt %, and/or the oxygen wt %.

    Managing Make-Up Gas Composition Variation for a High Pressure Expander Process

    公开(公告)号:US20230136307A1

    公开(公告)日:2023-05-04

    申请号:US18066369

    申请日:2022-12-15

    Abstract: A method for liquefying a feed gas stream. A refrigerant stream is cooled and expanded to produce an expanded, cooled refrigerant stream. Part or all of the expanded, cooled refrigerant stream is mixed with a make-up refrigerant stream in a separator, thereby condensing heavy hydrocarbon components from the make-up refrigerant stream and forming a gaseous expanded, cooled refrigerant stream. The gaseous expanded, cooled refrigerant stream passes through a heat exchanger zone to form a warm refrigerant stream. The feed gas stream is passed through the heat exchanger zone to cool at least part of the feed gas stream by indirect heat exchange with the expanded, cooled refrigerant stream, thereby forming a liquefied gas stream. The warm refrigerant stream is compressed to produce the compressed refrigerant stream.

Patent Agency Ranking