Abstract:
Systems and methods for automatically adjusting the orientation of one or more mirrors present on a motorized vehicle are responsive to the spatial position of at least one component of a driver seat present in such motorized vehicle.
Abstract:
Semiconductor devices including an isolation layer on a semiconductor substrate are provided. The isolation layer defines an active region of the semiconductor substrate. The device further includes an upper gate electrode crossing over the active region and extending to the isolation layer and lower active gate electrode. The lower active gate electrode includes a first active gate electrode extending from the upper gate electrode to the active region and a second active gate electrode below the first active gate electrode and having a greater width than a width of the first active gate electrode. The device further includes a lower field gate electrode that extends from the upper gate electrode to the isolation layer and has a bottom surface that is at a lower level than a bottom surface of the active gate electrode such that the sidewalls of the active region are covered below the lower active gate electrode. Related methods of fabricating semiconductor devices are also provided herein.
Abstract:
A vehicle includes a vehicle monitoring system for estimating vehicle motion states, a spatial monitoring system, an adaptive cruise control system for vehicle speed and acceleration control, a steering controller for vehicle lateral motion control, a roadway estimator, and an autonomic control system. Commanded vehicle operation is adjusted to achieve a preferred travel path based upon a predicted travel path and an estimated roadway. The preferred travel path is adapted responsive to the estimated roadway.
Abstract:
A method of producing a biomaterial measuring device is disclosed. The method includes forming a plurality of reactions elements, to which an assay reagent is applied, on a first substrate, cutting the resulting first substrate in a unit of individual reaction element, and attaching a first substrate piece, which is formed by cutting the resulting first substrate in the unit of individual reaction element, to a predetermined portion of a second substrate. In the biomaterial measuring device, since a material cost in minimized and it is easy to automate production, it is possible to reduce a production, it is possible to reduce a production cost.
Abstract:
A structure of an upper frame for supporting a cabin of construction machinery, whereby, in the event of a rollover accident, an excessive vertical load or rearward load applied to a cabin structure is primarily dispersed by a reinforcing member of the cabin structure, and the dispersed load is supported by a separate cabin supporting structure, so that the plastic deformation of the cabin structure can be minimized.
Abstract:
A coupling capacitor and a semiconductor memory device using the same are provided. In an embodiment, each memory cell of the semiconductor memory device includes a coupling capacitor so that a storage capacitor can store at least 2 bits of data. The coupling capacitor has a capacitance having a predetermined ratio with respect to the capacitance of the storage capacitor. For this, the coupling capacitor is formed by substantially the same fabrication process as the storage capacitor. The predetermined ratio is obtained by choosing an appropriate number of individual capacitors, each with the same capacitance of the storage capacitor, to comprise the coupling capacitor. Also, the coupling capacitor is disposed on an interlayer insulating layer that buries a bit line in a cell region and a sense amplifier in a sense amplifier region.
Abstract:
A recessed channel transistor includes a single crystalline silicon substrate having a recessed portion, a bottom surface of the recessed portion including an elevated central portion, a channel doping region in the single crystalline silicon substrate, the channel doping region being under the bottom surface of the recessed portion, a gate structure in the recessed portion, and source/drain regions in the single crystalline silicon substrate at both sides of the recessed portion, the source/drain regions being spaced apart from the bottom surface of the recessed portion.
Abstract:
Provided are a method of fabricating a recess channel transistor and a related semiconductor device. The method may include forming a first gate trench on a substrate, forming a dielectric spacer on a sidewall of the first gate trench, forming a second gate trench on the substrate under the first gate trench, and forming a gate electrode to fill the trenches. The dielectric spacer may remain between the gate electrode and the substrate.
Abstract:
According to some embodiments of the invention, a method of forming a transistor includes forming a device isolation layer in a semiconductor substrate. The device isolation layer is formed to define at least one active region. A channel region is formed in a predetermined portion of the active region of the semiconductor substrate. Two channel portion holes are formed to extend downward from a main surface of the semiconductor substrate to be in contact with the channel region. Gate patterns fill the channel portion holes and cross the active region. The resulting transistor is capable of ensuring a constant threshold voltage without being affected by an alignment state of the channel portion hole and the gate pattern.
Abstract:
Provided is a method of manufacturing a device-embedded circuit board. The method includes: preparing a first substrate with a first pattern portion comprising a conductive material; coupling, for example, an electronic chip to the first substrate; preparing a second substrate with a first through hole corresponding to a part of the first pattern portion, a housing portion for housing the electronic chip, and a first connection portion comprising a conductive material formed in the first through hole; preparing a third substrate with a second through hole corresponding to the first through hole and a second connection portion comprising a conductive material formed in the second through hole; aligning and coupling the first, second and third substrates so that the first pattern portion, the first connection portion and the second connection portion are electrically connected.