Abstract:
A polishing slurry for use in chemical mechanical polishing is disclosed. The polishing slurry contains a solvent and polishing particles dispersed in this solvent. The polishing particles are selected from silicon nitride, silicon carbide, and graphite. The primary particle size of the polishing particles dispersed in the solvent is appropriately 0.01 to 1000 nm. When the polishing particles are colloidally dispersed in the solvent, the secondary particle size of the polishing particles is appropriately 60 to 300 nm.
Abstract:
A sign language interpretation apparatus for performing sign language recognition and sign language generation generates easily read sign language computer graphics (CG) animation by preparing sign language word CG patterns on the basis of actual motion of the hand through the use of a glove type sensor to generate natural sign language CG animation, and by applying correction to the sign language word CG patterns. Further, in the sign language interpretation apparatus, results of translation of inputted sign language or voice language are confirmed and modified easily by the individual input persons, whereby results of translation of the inputted sign language or voice language are displayed in a combined form desired by the user to realize smooth communication. Also, candidates obtained as a result of translation are all displayed and can be selected easily by the input person with a device such as a mouse. Further, when a polysemous word is available, the word is displayed while being changed in its display form, and other expressions are confirmed and modified with the mouse.
Abstract:
A polishing slurry for use in chemical mechanical polishing is disclosed. The polishing slurry contains a solvent and polishing particles dispersed in this solvent. The polishing particles are selected from silicon nitride, silicon carbide, and graphite. The primary particle size of the polishing particles dispersed in the solvent is appropriately 0.01 to 1000 nm. When the polishing particles are colloidally dispersed in the solvent, the secondary particle size of the polishing particles is appropriately 60 to 300 nm.
Abstract:
Disclosed is an alignment mark for the X directional alignment of a chip area on a semiconductor wafer, for example. The alignment mark comprises recesses and projections formed on a semiconductor substrate. The recesses or projections are repeatedly arranged in the X direction. The X directional width of the recesses or projections is set smaller than the X directional width of a grain on a metal film formed on the recesses and projections or the average particle size, as viewed from above the semiconductor substrate. The projections may be formed by an insulating layer formed on the semiconductor substrate.
Abstract:
A sign language interpretation apparatus for performing sign language recognition and sign language generation generates easily read sign language computer graphics (CG) animation by preparing sign language word CG patterns on the basis of actual motion of the hand through the use of a glove type sensor to generate natural sign language CG animation, and by applying correction to the sign language word CG patterns. Further, in the sign language interpretation apparatus, results of translation of inputted sign language or voice language are confirmed and modified easily by the individual input persons, whereby results of translation of the inputted sign language or voice language are displayed in a combined form desired by the user to realize smooth communication. Also, candidates obtained as a result of translation are all displayed and can be selected easily by the input person with a device such as a mouse. Further, when a polysemous word is available, the word is displayed while being changed in its display form, and other expressions are confirmed and modified with the mouse.
Abstract:
Disclosed is an alignment mark for the X directional alignment of a chip area on a semiconductor wafer, for example. The alignment mark comprises recesses and projections formed on a semiconductor substrate. The recesses or projections are repeatedly arranged in the X direction. The X directional width of the recesses or projections is set smaller than the X directional width of a grain on a metal film formed on the recesses and projections or the average particle size, as viewed from above the semiconductor substrate. The projections may be formed by a insulating layer formed on the semiconductor substrate.
Abstract:
A dielectric ceramic composition is disclosed which consists essentially of: a main ceramic composition containing barium oxide, titanium oxide, rare earth oxide and bismuth oxide as major components, which composition is represented by xBaO.multidot.yTiO.sub.2 .multidot.z[(1-a)RE.sub.2 O.sub.3 .multidot.aBi.sub.2 O.sub.3 ] where RE represents at least one rare earth metal, 0.10.ltoreq.x.ltoreq.0.20, 0.60.ltoreq.y.ltoreq.0.75, 0.10 .ltoreq.z.ltoreq.0.25, x+y+z=1 and 0
Abstract translation:公开了一种介电陶瓷组合物,其基本上由以下组成:包含氧化钡,氧化钛,稀土氧化物和氧化铋作为主要成分的主要陶瓷组合物,该组成由xBaOxyTiO 2 x z [(1-a)RE 2 O 3 xBi 2 O 3]表示,其中RE表示 至少一种稀土金属,0.10≤x≤0.20,0.60,y = 0.75,0.10,z = 0.25,x + y + z = 1,0
Abstract:
A reaction gas or a gas containing a reaction gas is blown through blowing nozzles onto a steel material in a chemical vapor deposition treating chamber at a velocity sufficient to forcibly remove reacted products from reacted surfaces of a steel material while suppressing irregular thickness of a deposited film.
Abstract:
A method of forming a trench buried wiring on a semiconductor device. The method includes the steps of: forming a trench in a first insulating film formed on a semiconductor substrate, by using as a mask a photoresist layer, the trench having substantially an upright step; depositing a first electrode material on the surface of the photoresist layer and on the bottom of the trench, while leaving the photoresist layer; removing the photoresist layer and the first electrode material on the photoresist layer while leaving the first electrode material only on the bottom of the trench; and filling a second electrode material in the trench to form a composite electrode with the second electrode material being superposed on the first electrode material.
Abstract:
In a method for determining an end of cleaning of a semiconductor manufacturing apparatus according to the invention, when the interior of a semiconductor substrate process chamber of the semiconductor manufacturing apparatus is cleaned by dry etching using plasma discharge, a constant current or voltage is supplied from a high-frequency power source to discharge electrodes during plasma discharge, an impedance between the electrodes or a temperature in the process chamber is monitored, a time point at which the impedance or temperature is abruptly changed is detected, and this time point of detection is determined to be an end of cleaning.