摘要:
Polycationic peptide coatings for implantable medical devices and methods of making the same are described. The methods include applying an emulsion on the device, the emulsion including a polymer and a polycationic peptide. Other methods include incorporation of the polycationic peptide in microspheres and liposomes.
摘要:
An implantable medical device is disclosed comprising a high-density lipoprotein (HDL), recombinant HDL, high-density lipoprotein mimics (HDLm), or a combination thereof. Method are also disclosed for local and systemic administration HDL, recombinant HDL or HDLm for the prevention, treatment, or amelioration of a vascular disorder, disease or occlusion such as restenosis or vulnerable plaque.
摘要:
A method of making a balloon expandable braided stent with a restraint to initially prevent self-expansion and the resulting product. Multiple strands of a resilient metal or plastic are braided to form a tubular configuration of a predetermined outside diameter which assumes a lesser diameter when the tubular stent is longitudinally stretched. When in its stretched condition, it is coated with a polymeric material which is then cross-linked to effectively “freeze” the intersections of the braided structure holding it in its reduced diameter configuration. The tubular stent is designed to be placed within a body vessel using a balloon stent delivery catheter. When the balloon surrounded by the braided wire stent is inflated, the stent expands initially to an extent to break the bonds of plastic material between the intersections of the strands, thereby permitting self-expansion to take place. The coating may also comprise a hydrogel or an elastomeric impregnated with the water soluble particles which softens and/or deteriorates upon exposure to an aqueous media, such as blood.
摘要:
A coating and method for a coating an implantable device or prostheses are disclosed. The coating includes an undercoat of polymeric material containing an amount of biologically active material, particularly heparin, dispersed therein. The coating further includes a topcoat which covers less than the entire surface of the undercoat and wherein the topcoat comprises a polymeric material substantially free of pores and porosigens. The polymeric material of the topcoat can be a biostable, biocompatible material which provides long term non-thrombogenicity to the device portion during and after release of the biologically active material.
摘要:
The invention is directed to a method of applying drug-release coatings whereby a polymer can be dissolved in a first solvent (solvent A) to form a polymer system and a drug can be dissolved or suspended in a second solvent (solvent B) to form a drug system. The coating or layer of coating so formed comprises a substantially uniform combination of the drug and polymer. Solvent B can be the same as or different than solvent A. The coating can be applied on a stent body by separately spraying or dipping the polymer system and the drug system onto the devices. The coating can be accomplished by either applying the polymer and drug systems sequentially or simultaneously. In certain embodiments, a drug can be suspended in solvent B. In some cases, three or more systems can be utilized. For instance, a third system containing pure solvent A or B can smooth the coating surface, if the solvent of the third spraying system is compatible with the polymer matrix.
摘要:
The invention is directed to medical devices having a drug-releasing coating and methods for making such coated devices. The coating permits timed or prolonged pharmacological activity on the surface of medical devices through a reservoir concept. Specifically, the coating comprises at least two layers: an outer layer containing at least one drug-ionic surfactant complex overlying a reservoir layer containing a polymer and the drug which is substantially free of an ionic surfactant. Upon exposure to body tissue of a medical device covered with such coating, the ionically bound drug in the outer layer is released into body fluid or tissue. Following release of such bound drug, the ionic surfactant binding sites in the outer layer are left vacant. To maintain the pharmacological activity after delivery of the ionically bound drug, additional amounts of the drug are embedded or incorporated in the reservoir layer in a manner which allows the drug, which is substantially free of ionic surfactants, to complex with the vacant binding sites of the ionic surfactant of the outer layer. As a result, the surface of the medical device is enriched with the drug to provide sustained pharmacological activity to prevent the adverse reaction due to the presence of the medical device. The invention is further directed to medical devices with stabilized drug-releasing coatings. The coatings are stabilized by exposure to a low energy, relatively non-penetrating energy source, e.g., gas plasma or an electron beam energy source.
摘要:
A process for rendering the surfaces of polymeric plastic or rubber materials, which are intrinsically non-polar or only slightly polar, and hydrophobic, polar or more polar, and hydrophilic, so that amine-containing functional groups, and ultimately, a durable tenaciously adhering, slippery polyurethane or polyurethane-urea hydrogel coating may subsequently be applied to the polymer surface, is disclosed. The process involves dual plasma-treatment of a polymeric plastic or rubber substrate material; the first treatment being with an oxygen-containing plasma gas, to affix hydroxyl, carboxyl and carbonyl groups to the substrate surface, thereby rendering the surface more polar and activated; and the second treatment being with a nitrogen-containing plasma gas, to affix amine and amino groups to the substrate surface to make it more hydrophilic and reactive toward terminal isocyanate groups of a polyurethane or polyurethane/urea prepolymer adduct intermediate tie-coat which is subsequently applied to the substrate surface and then converted to a tenaciously adhering, slippery hydrogel coating. The process is especially suited to the hydrophilicization of intrinsically non-polar and hydrophobic polymeric plastic materials, such as polyethylenes, nylons-11 and nylons-12.
摘要:
A method of coating implantable open lattice metallic stent prosthesis is disclosed which includes sequentially applying a plurality of relatively thin outer layers of a coating composition comprising a solvent mixture of uncured polymeric silicone material and crosslinker and finely divided biologically active species, possibly of controlled average particle size, to form a coating on each stent surface. The coatings are cured in situ and the coated, cured prosthesis are sterilized in a step that includes preferred pretreatment with argon gas plasma and exposure to gamma radiation electron beam, ethylene oxide, steam.
摘要:
A polymer of hydrophobic monomers and hydrophilic monomers is provided. It is also provided a polymer blend that contains the polymer and another biocompatible polymer. The polymer or polymer blend and optionally a biobeneficial material and/or a bioactive agent can form a coating on an implantable device such as a drug delivery stent. The implantable device can be used for treating or preventing a disorder such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, patent foramen ovale, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.