Abstract:
Provided is a fuel supply system for a marine structure. The fuel supply system includes a BOG compression unit configured to receive and compress BOG generated in a storage tank, a reliquefaction apparatus configured to receive and liquefy the BOG compressed by the BOG compression unit, a high-pressure pump configured to compress the liquefied BOG generated by the reliquefaction apparatus, and a high-pressure gasifier configured to gasify the liquefied BOG compressed by the high-pressure pump. The fuel supply system includes a recondenser installed at an upstream side of the high-pressure pump and configured to recondense a portion or all of the generated BOG by using liquefied gas received from the storage tank. The BOG compression unit compresses BOG to a pressure of about 12 to 45 bara such that the BOG is liquefied under the compression pressure of the BOG compression unit.
Abstract:
Provided is a fuel supply system for a high-pressure natural gas injection engine. The fuel supply system includes: a BOG compression unit configured to receive BOG, which is generated in a storage tank, from the storage tank and compress the received BOG to a pressure of 12 to 45 bara; a reliquefaction apparatus configured to receive and liquefy the BOG compressed by the BOG compression unit; a high-pressure pump configured to compress the BOG liquefied by the reliquefaction apparatus; a high-pressure gasifier configured to gasify the BOG compressed by the high-pressure pump and supply the gasified BOG to the high-pressure natural gas injection engine; and an excess BOG consumption unit configured to consume excess BOG corresponding to a difference between an amount of BOG generated in the storage tank and an amount of BOG required as fuel for the high-pressure natural gas injection engine.
Abstract:
Disclosed is an inertial sensor, including a membrane, a mass body provided underneath a central portion of the membrane, a post provided underneath a peripheral portion of the membrane, and a cap having a peripheral portion bonded to a lower surface of the post using low-temperature silicon direct bonding. A method of manufacturing the inertial sensor is also provided.
Abstract:
Disclosed herein is an inertial sensor. The inertial sensor 100 according to preferred embodiments of the present invention includes: a membrane 110; a mass body 120 disposed under the membrane 110; a piezoelectric body 130 formed on the membrane 110 to drive the mass body 120; and trenches 140 formed by being collapsed in a thickness direction of the piezoelectric body 130 so as to vertically meet a direction in which the mass body 120 is driven. By this configuration, the trenches are formed by being collapsed in a thickness direction of the piezoelectric body 130 to provide directivity while retaining the rigidity of the piezoelectric body 130 to prevent a wave from being propagated in an unnecessary direction, thereby driving the inertial sensor 100 in a desired specific direction.
Abstract:
Disclosed herein are an inertial sensor and a method of manufacturing the same. The inertial sensor 100 according to a preferred embodiment of the present invention is configured to include a plate-shaped membrane 110, a mass body 120 disposed under a central portion 113 of the membrane 110, a post 130 disposed under an edge 115 of the membrane 110 so as to support the membrane 110, and a bottom cap 150 of which the edge 153 is provided with the first cavity 155 into which an adhesive 140 is introduced, wherein the adhesive 140 bonds an edge 153 to a bottom surface of the post, whereby the edge 153 of the bottom cap 150 is provided with the first cavity 155 to introduce the adhesive 140 into the first cavity 155, thereby preventing the adhesive 140 from being permeated into the post 130.
Abstract:
The method of manufacturing an inertial sensor includes: (A) disposing a first mold 120 and a second mold 125 on both surfaces of a predetermined region R in a plate-shaped membrane 110, (B) forming a mass body 130, a post 140, and an upper cap 150 through a plating process or a filling process, (C) disposing a third mold 160 on an exposed surface of the first mold 120 and the mass body 130, and (D) forming a lower cap 170 through the plating process or the filling process. Since the mass body 130 is made of metal by a plating process or a filling process, the density of the mass body 130 may be increased and the mass body 130 may be formed to have a structure of a high aspect ratio, thereby improving the sensitivity of the inertial sensor 100.
Abstract:
Disclosed therein is an electric curling iron. The electric curling iron includes: a body part; a heating rod arranged at a side of the body part and having a heat ray heater disposed therein; an upper handle and a lower handle hinge-coupled on a hinge shaft formed at the other side of the body part, the upper and lower handles being movable in a tong shape; and an upper pressing member and a lower pressing member whose end portions are respectively overlapped and hinge-coupled to front ends of the inner faces of the upper and lower handles, the upper and lower pressing members respectively having a shape corresponding to the outer circumferential surface of the heating rod, wherein the upper and lower pressing members are opened wider than the upper and lower handles, so that a user can rapidly and convenient do hair styling.
Abstract:
The method includes performing a wired back-to-back test by forming M wired paths connecting one of the N transmission antennas with the M reception antennas through M cables, separating ith digital data corresponding to an ith receiver wired path from the plurality of digital data stored in the receiver wherein i is a natural number greater than 1 and smaller than M, extracting a time delay by decimating the separated ith digital data and performing sliding correlation on the decimated data, and extracting attenuation and phase characteristics of the ith receiver wired path by extracting samples after the time delay among the decimated samples.
Abstract:
A gain control apparatus in a receiver of multiband OFDM system includes: an amplifier amplifying a received signal based on a first auto gain control signal; an analog-to-digital converter for converting the amplified signal into a digital signal; band reception signal extractor for extracting a signal of a desired reception band from the converted digital signal for each reception band, and controlling gain of the extracted signal according to a second auto gain control signal; a reception power detector for detecting a reception power value of whole band from the converted digital signal; and a multiband integration baseband processor for generating the first auto gain control signal by using the detected reception power value of the whole band, and generating the second auto gain control signal to be provided to the band reception signal extraction units, resource allocation information for each band and a reception power for each reception band.
Abstract:
There are provided an LED package using a Si substrate and a fabricating method of the LED package. In the LED package, a supporting structure includes a Si substrate and an insulating layer formed on top and bottom surfaces of the Si substrate, and the supporting structure defines at least one groove in a bottom surface by partially removing the Si substrate and the insulating layer. A plurality of upper electrodes is formed on a top surface of the supporting structure. At least one LED is mounted on the top surface of the supporting structure, and the LED includes both terminals electrically connected to the upper electrodes. A metal filler is filled in the groove defined in the bottom surface of the supporting structure.