Abstract:
Embodiments of the invention include drug delivery coatings and devices including the same. In an embodiment, a drug delivery coating is included herein having a base polymeric layer, the base polymeric layer including a hydrophilic polyether block amide copolymer and having a hydrophilic surface. The drug delivery coating can further include a therapeutic agent layer forming an exterior surface the drug delivery coating, the therapeutic agent layer contacting the hydrophilic surface of the base polymeric layer and having a composition different than the base polymeric layer, the therapeutic agent layer including a particulate hydrophobic therapeutic agent and a cationic agent. Other embodiments are also included herein.
Abstract:
The present invention provides insertable medical devices having elastic surfaces associated with bioactive agent-containing microparticulates and a coating material. Upon expansion of the elastic surfaces the microparticulates can be released to a subject.
Abstract:
Disclosed herein is a delivery composition for administering a hydrophobic active agent. In one embodiment, a delivery composition for local administration of a hydrophobic active agent to a tissue or organ of a patient is disclosed. In one embodiment, the delivery composition includes a cationic delivery agent, a therapeutically effective amount of a hydrophobic active agent and a pharmaceutically acceptable aqueous carrier. In one embodiment, the cationic delivery agent includes polyethyleneimine (PEI). In a more specific embodiment, the cationic delivery agent includes branched PEI. Methods of making the delivery composition, as well as kits and methods of use are also disclosed.
Abstract:
The present invention provides insertable medical devices having elastic surfaces associated with bioactive agent-containing microparticulates and a coating material. Upon expansion of the elastic surfaces the microparticulates can be released to a subject.
Abstract:
Embodiments of the invention include lubricious medical device coatings. In an embodiment the invention includes a coating for a medical device including a first layer comprising polyvinylpyrrolidone derivatized with a photoreactive group; anda first cross-linking agent comprising at least two photoreactive groups; a second layer disposed on the first layer comprising polyvinylpyrrolidone derivatized with a photoreactive group; a second cross-linking agent comprising at least two photoreactive groups; and a polymer comprising polyacrylamide, the polymer derivatized with at least one photoreactive group. Other embodiments are included herein.
Abstract:
Embodiments of the invention include apparatus and methods for coating drug eluting medical devices. In an embodiment, the invention includes a coating apparatus including a coating application unit comprising a movement restriction structure; a fluid applicator; and an air nozzle. The apparatus can further include a rotation mechanism and an axial motion mechanism, the axial motion mechanism configured to cause movement of at least one of the coating application unit and the rotation mechanism with respect to one another. Other embodiments are also included herein.
Abstract:
Described herein are terpolymer compositions, kits comprising the compositions, implant devices comprising the compositions, and methods of making and using same, including point of use methods.
Abstract:
A biocompatible polymeric controlled release matrix barrier structure for delivery of one or more bioactive agents from an implantable medical device is described. In an embodiment, a biocompatible polymeric controlled release matrix barrier structure is included. The biocompatible polymeric controlled release matrix can include a body structure formed of a compliant material comprising one or more compliant biocompatible polymers and one or more bioactive agents. The body structure can define a central aperture through which a subcutaneous element of an implantable medical device passes. Other embodiments are included herein.
Abstract:
The invention provides therapeutic particulates including a macrolide, such as rapamycin, in solid state crystalline form, having a size of 20 μm or less, or 10 μm or less. The particulates are formed in one method by preparing a composition with a macrolide and first (e.g., xylene) and second (e.g., an alcohol, acetone, or acetonitrile) solvents. In the composition a maximum solubility for the macrolide that is greater than a maximum solubility of the macrolide dissolved in either the first or second solvent individually. The first and second solvents are then evaporated from the composition to provide the macrolide particulates. In another method, the particulates can be formed by a method including sonication and stirring/evaporation steps, and the particulates can be obtained from a supersaturated solution, formed during the process. Particulates display desirable low polydispersity, and can be used in therapeutic compositions, or can be associated with an implantable or insertable medical device for the treatment of a subject.