Abstract:
A decoder includes circuitry and a soft decoder. The circuitry is configured to receive channel hard decisions for respective bits of a Generalized Low-Density Parity Check (GLDPC) code word that includes multiple component code words, including first and second component code words having one or more shared bits, to schedule decoding of the GLDPC code word, and following the decoding, to output the decoded GLDPC code word. The soft decoder is configured to receive the channel hard decisions corresponding to the first component code word, to further receive soft reliability measures that were assigned to the shared bits in decoding the second component code word, and to decode the first component code word based on the channel hard decisions and the soft reliability measures.
Abstract:
A method for data storage includes storing first data bits in a set of multi-bit analog memory cells at a first time by programming the memory cells to assume respective first programming levels. Second data bits are stored in the set of memory cells at a second time that is later than the first time by programming the memory cells to assume respective second programming levels that depend on the first programming levels and on the second data bits. A storage strategy is selected responsively to a difference between the first and second times. The storage strategy is applied to at least one group of the data bits, selected from among the first data bits and the second data bits.
Abstract:
A method includes storing data in memory cells by programming the memory cells with respective values. The memory cells are read in multiple readout operations that each compares the programmed values to at least first and second read thresholds, while keeping the first read threshold fixed throughout the readout operations and perturbing only the second read threshold between the readout operations. A preferred value for the second read threshold is estimated based on the multiple readout operations.
Abstract:
A method for operating a memory includes storing data in a plurality of analog memory cells that are fabricated on a first semiconductor die by writing input storage values to a group of the analog memory cells. After storing the data, multiple output storage values are read from each of the analog memory cells in the group using respective, different threshold sets of read thresholds, thus providing multiple output sets of the output storage values corresponding respectively to the threshold sets. The multiple output sets of the output storage values are preprocessed by circuitry that is fabricated on the first semiconductor die, to produce preprocessed data. The preprocessed data is provided to a memory controller, which is fabricated on a second semiconductor die that is different from the first semiconductor die. so as to enable the memory controller to reconstruct the data responsively to the preprocessed data.
Abstract:
A method includes storing data values in a group of memory cells that share a common isolating layer, by producing quantities of electrical charge representative of the data values at respective regions of the common isolating layer that are associated with the memory cells. A function, which relates a drift of the electrical charge in a given memory cell in the group to the data values stored in one or more other memory cells in the group, is estimated. The drift is compensated for using the estimated function.
Abstract:
A method includes, in a plurality of memory cells that share a common isolation layer and store in the common isolation layer quantities of electrical charge representative of data values, assigning a first group of the memory cells for data storage, and assigning a second group of the memory cells for protecting the electrical charge stored in the first group from retention drift. Data is stored in the memory cells of the first group. Protective quantities of the electrical charge that protect from the retention drift in the memory cells of the first group are stored in the memory cells of the second group.
Abstract:
A method for data storage in a memory that includes multiple analog memory cells, includes defining, based on a characteristic of the memory cells, an uneven wear leveling scheme that programs and erases at least first and second subsets of the memory cells with respective different first and second Programming and Erasure (P/E) rates. Data is stored in the memory in accordance with the uneven wear leveling scheme.
Abstract:
A method for operating a memory includes storing data in a plurality of analog memory cells that are fabricated on a first semiconductor die by writing input storage values to a group of the analog memory cells. After storing the data, multiple output storage values are read from each of the analog memory cells in the group using respective, different threshold sets of read thresholds, thus providing multiple output sets of the output storage values corresponding respectively to the threshold sets. The multiple output sets of the output storage values are preprocessed by circuitry that is fabricated on the first semiconductor die, to produce preprocessed data. The preprocessed data is provided to a memory controller, which is fabricated on a second semiconductor die that is different from the first semiconductor die. so as to enable the memory controller to reconstruct the data responsively to the preprocessed data.
Abstract:
A method includes, in a plurality of memory cells that share a common isolation layer and store in the common isolation layer quantities of electrical charge representative of data values, assigning a first group of the memory cells for data storage, and assigning a second group of the memory cells for protecting the electrical charge stored in the first group from retention drift. Data is stored in the memory cells of the first group. Protective quantities of the electrical charge that protect from the retention drift in the memory cells of the first group are stored in the memory cells of the second group.
Abstract:
A method includes storing data in a memory, which includes multiple strings of analog memory cells arranged in a three-dimensional (3-D) configuration having a first dimension associated with bit lines, a second dimension associated with word lines and a third dimension associated with sections, such that each string is associated with a respective bit line and a respective section and includes multiple memory cells that are connected to the respective word lines. For a group of the strings, respective values of a property of the strings in the group are evaluated. Source-side voltages are calculated for the respective strings in the group, depending on the respective values of the property, and respective source-sides of the strings in the group are biased with the corresponding source-side voltages. A memory operation is performed on the strings in the group while the strings are biased with the respective source-side voltages.