摘要:
In sophisticated semiconductor devices, different threshold voltage levels for transistors may be set in an early manufacturing stage, i.e., prior to patterning the gate electrode structures, by using multiple diffusion processes and/or gate dielectric materials. In this manner, substantially the same gate layer stacks, i.e., the same electrode materials and the same dielectric cap materials, may be used, thereby providing superior patterning uniformity when applying sophisticated etch strategies.
摘要:
During the fabrication of advanced transistors, significant dopant diffusion may be suppressed by performing a millisecond anneal process after completing the basic transistor configuration, wherein a stress memorization technique may also be obtained by forming a strain-inducing area within a sidewall spacer structure. Due to the corresponding void formation in the spacer structure, a high tensile strain component may be obtained in the adjacent channel region.
摘要:
By providing a substantially non-damaged semiconductor region between a pre-amorphization region and the gate electrode structure, an increase of series resistance at the drain side during the re-crystallization may be reduced, thereby contributing to overall transistor performance, in particular in the linear operating mode. Thus, symmetric and asymmetric transistor architectures may be achieved with enhanced performance without unduly adding to overall process complexity.
摘要:
A method of forming a semiconductor structure comprises providing a semiconductor substrate comprising a first transistor element and a second transistor element. Each of the first transistor element and the second transistor element comprises a gate electrode. A stressed material layer is deposited over the first transistor element and the second transistor element. The stressed material layer is processed to form from the stressed material layer sidewall spacers adjacent the gate electrode of the second transistor element and a hard mask covering the first transistor element. A pair of cavities is formed adjacent the gate electrode of the second transistor element. A pair of stress-creating elements is formed in the cavities and the hard mask is at least partially removed.
摘要:
Disclosed herein are various semiconductor devices with dual metal silicide regions and to various methods of making such devices. One illustrative method disclosed herein includes the steps of forming an upper portion of a source/drain region that is positioned above a surface of a semiconducting substrate, wherein the upper portion of the source/drain region has an upper surface that is positioned above the surface of the substrate by a distance that is at least equal to a target thickness of a metal silicide region to be formed in the upper portion of the source/drain region and forming the metal silicide region in the upper portion of the source/drain region.
摘要:
In a multiple gate transistor, the plurality of Fins of the drain or source of the transistor are electrically connected to each other by means of a common contact element, wherein enhanced uniformity of the corresponding contact regions may be accomplished by an enhanced silicidation process sequence. For this purpose, the Fins may be embedded into a dielectric material in which an appropriate contact opening may be formed to expose end faces of the Fins, which may then act as silicidation surface areas.
摘要:
In a stacked semiconductor device, a Peltier element may be incorporated as a distributed element so as to provide active heat transfer from a high power device into a low power device, thereby achieving superior temperature control in stacked device configurations. For example, a CPU and a dynamic RAM device may be provided as a stacked configuration, wherein waste heat of the CPU may be efficiently distributed into the low power memory device.
摘要:
When forming sophisticated high-k metal gate electrode structures, the removal of a dielectric cap material may be accomplished with superior process uniformity by using a silicon dioxide material. In other illustrative embodiments, an enhanced spacer regime may be applied, thereby also providing superior implantation conditions for forming drain and source extension regions and drain and source regions.
摘要:
A HKMG device with PMOS eSiGe source/drain regions is provided. Embodiments include forming first and second HKMG gate stacks on a substrate, each including a SiO2 cap, forming extension regions at opposite sides of the first HKMG gate stack, forming a nitride liner and oxide spacers on each side of HKMG gate stack; forming a hardmask over the second HKMG gate stack; forming eSiGe at opposite sides of the first HKMG gate stack, removing the hardmask, forming a conformal liner and nitride spacers on the oxide spacers of each of the first and second HKMG gate stacks, and forming deep source/drain regions at opposite sides of the second HKMG gate stack.
摘要:
In one example, a method disclosed herein includes the steps of forming a gate structure for a first transistor and a second transistor above a semiconducting substrate, forming a liner layer above the gate structures and performing a plurality of extension ion implant processes through the liner layer to form extension implant regions in the substrate for the first transistor and the second transistor. The method further includes forming a first sidewall spacer proximate the gate structure for the first transistor and a patterned hard mask layer positioned above the second transistor, performing at least one etching process to remove the first sidewall spacer, the patterned hard mask layer and the liner layer, forming a second sidewall spacer proximate both of the gate structures and performing a plurality of source/drain ion implant processes to form deep source/drain implant regions in the substrate for the first transistor and the second transistor.