摘要:
Methods and devices are provided for fabricating a semiconductor device having barrier regions within regions of insulating material resulting in outgassing paths from the regions of insulating material. A method comprises forming a barrier region within an insulating material proximate the isolated region of semiconductor material and forming a gate structure overlying the isolated region of semiconductor material. The barrier region is adjacent to the isolated region of semiconductor material, resulting in an outgassing path within the insulating material.
摘要:
An epitaxial Ni silicide film that is substantially non-agglomerated at high temperatures, and a method for forming the epitaxial Ni silicide film, is provided. The Ni silicide film of the present disclosure is especially useful in the formation of ETSOI (extremely thin silicon-on-insulator) Schottky junction source/drain FETs. The resulting epitaxial Ni silicide film exhibits improved thermal stability and does not agglomerate at high temperatures.
摘要:
A method for fabricating a dual-workfunction FinFET structure includes depositing a first workfunction material in a layer in a plurality of trenches of the FinFET structure, depositing a low-resistance material layer over the first workfunction material layer, and etching the low-resistance material layer and the first workfunction material layer from a portion of the FinFET structure. The method further includes depositing a second workfunction material in a layer in a plurality of trenches of the portion and depositing a stress material layer over the second workfunction material layer.
摘要:
Disclosed is a method for converting cellulose in a lignocellulosic biomass. The method provides for a lignin-blocking polypeptide and/or protein treatment of high lignin solids. The treatment enhances cellulase availability in cellulose conversion and allows for the determination of optimized pretreatment conditions. Additionally, ethanol yields from a Simultaneous Saccharification and Fermentation process are improved 5-25% by treatment with a lignin-blocking polypeptide and/or protein.
摘要:
A complementary metal-oxide-semiconductor (CMOS) device and methods of formation thereof are disclosed. In a particular embodiment, a CMOS device includes a silicon substrate, a dielectric insulator material on the silicon substrate, and an extension layer on the dielectric insulator material. The CMOS device further includes a gate in contact with a channel and in contact with an extension region. The CMOS device also includes a source in contact with the extension region and a drain in contact with the extension region. The extension region includes a first region in contact with the source and the gate and includes a second region in contact with the drain and the gate.
摘要:
The invention provides a method for producing silicon nanowire devices, including the following steps: growing SiNW on a substrate; depositing an amorphous carbon layer and dielectric anti-reflectivity coating orderly; removing part of dielectric anti-reflectivity coating and amorphous carbon layer above the SiNW through dry etching to expose the SiNW device area; depositing an oxide film on the surface of the above structure; forming a metal pad connected with the SiNW in the SiNW device area; depositing a passivation layer on the surface of the above structure; applying photolithography and etching technology to form contact holes on the metal pad and to remove the passivation layer, the oxide film and the dielectric anti-reflectivity coating above the SiNW outside the device area, stopping on the amorphous carbon layer; removing the amorphous carbon layer above the SiNW outside the device area through ashing process to expose the SiNW.
摘要:
A Schottky field effect transistor is provided that includes a substrate having a layer of semiconductor material atop a dielectric layer, wherein the layer of semiconductor material has a thickness of less than 10.0 nm. A gate structure is present on the layer of semiconductor material. Raised source and drain regions comprised of a metal semiconductor alloy are present on the layer of semiconductor material on opposing sides of the gate structure. The raised source and drain regions are Schottky source and drain regions. In one embodiment, a first portion of the Schottky source and drain regions that is adjacent to a channel region of the Schottky field effect transistor contacts the dielectric layer, and a non-reacted semiconductor material is present between a second portion of the Schottky source and drain regions and the dielectric layer.
摘要:
A method for forming a silicide contact includes depositing a metal layer on silicon such that the metal layer intermixes with the silicon to form an intermixed region on the silicon; removing an unintermixed portion of the metal layer from the intermixed region; and annealing the intermixed region to form a silicide contact on the silicon. A semiconductor device comprising a silicide contact located over a silicon layer of the semiconductor device, the silicide contact comprising nickel (Ni) and silicon (Si) and having Ni amount equivalent to a thickness of about 21 angstroms or less.
摘要:
Apparatus for semiconductor device structures and related fabrication methods are provided. One method for fabricating a semiconductor device structure involves forming a gate structure overlying a region of semiconductor material, wherein the width of the gate structure is aligned with a crystal direction of the semiconductor material. The method continues by forming recesses about the gate structure and forming a stress-inducing semiconductor material in the recesses.
摘要:
A method of fabricating a semiconductor device with back side conductive plugs is provided here. The method begins by forming a gate structure overlying a semiconductor-on-insulator (SOI) substrate. The SOI substrate has a support layer, an insulating layer overlying the support layer, an active semiconductor region overlying the insulating layer, and an isolation region outboard of the active semiconductor region. A first section of the gate structure is formed overlying the isolation region and a second section of the gate structure is formed overlying the active semiconductor region. The method continues by forming source/drain regions in the active semiconductor region, and thereafter removing the support layer from the SOI substrate. Next, the method forms conductive plugs for the gate structure and the source/drain regions, where each of the conductive plugs passes through the insulating layer.