摘要:
An apparatus for processing a defect candidate image, including: a scanning electron microscope for taking an enlarged image of a specimen by irradiating and scanning a converged electron beam onto the specimen and detecting charged particles emanated from the specimen by the irradiation; an image processor for processing the image taken by the scanning electron microscope to detect defect candidates on the specimen and classify the detected defect candidates into one of plural classes; a memory for storing output from the image processor including images of the detected defect candidates; and a display unit which displays information stored in the memory and an indicator, wherein the display unit displays a distribution of the detected and classified defect candidates in a map format by distinguishing by the classified class, and the display unit also displays an image of a defect candidate stored in the memory together with the map which is indicated on the map by the indicator.
摘要:
An apparatus for processing a defect candidate image, including: a scanning electron microscope for taking an enlarged image of a specimen by irradiating and scanning a converged electron beam onto the specimen and detecting charged particles emanated from the specimen by the irradiation; an image processor for processing the image taken by the scanning electron microscope to detect defect candidates on the specimen and classify the detected defect candidates into one of plural classes; a memory for storing output from the image processor including images of the detected defect candidates; and a display unit which displays information stored in the memory and an indicator, wherein the display unit displays a distribution of the detected and classified defect candidates in a map format by distinguishing by the classified class, and the display unit also displays an image of a defect candidate stored in the memory together with the map which is indicated on the map by the indicator.
摘要:
It is difficult for a material having low resistance to electron beam irradiation to obtain an electron microscopic image having a high S/N ratio. A conventional image smoothing process can improve stability of measurement, but this process has a problem of measurement errors for absolute values, reduction of sensitivity, deterioration of quality of cubic shape information and the like. In the present invention, by performing an image averaging process without deteriorating cubic shape information of a signal waveform in consideration of dimension deviation of a measurement target pattern, measurement stability is compatible with improvement of precision and sensitivity. Accordingly, it is possible to realize measurement of pattern dimensions and shapes with high precision and control of a highly sensitive semiconductor manufacturing process using the measurement.
摘要:
To provide a consistent, high-speed, high-precision measurement method based on an electron beam simulation by reflecting the apparatus characteristics of a CD-SEM in an electron beam simulation, the present invention discloses a method for measuring a measurement target pattern with a CD-SEM, the method comprising the steps of performing an electron beam simulation on various target pattern shapes, which is reflected apparatus characteristic and image acquisition conditions; creating SEM simulated waveforms; storing a combination of the created SEM simulated waveforms and pattern shape information corresponding to the created SEM simulated waveforms as a library; comparing an acquired actual electron microscope image with the SEM simulated waveforms; selecting the SEM simulated waveform that is most similar to the actual electron microscope image; and estimating the shape of the measurement target pattern from the pattern shape information corresponding to the selected SEM simulated waveform.
摘要:
A method of measuring pattern dimensions includes evaluating a relationship between cross-sectional shapes of a pattern and measurement errors of a pattern in a specified image processing technique, and conducting an actual measurement in which dimension measurement of an evaluation objective pattern from image signals of a microscope is carried out, and revising errors of the dimension measurement of the evaluation objective pattern based on the relationship between the cross-sectional shapes of a pattern and the measurement errors of a pattern previously evaluated.
摘要:
Conventionally, there is no method for quantitatively evaluating the three-dimensional shape of an etched pattern in a non-destructive manner and it takes much time and costs to determine etching conditions. With the conventional length measuring method only, it has been impossible to detect an abnormality in the three-dimensional shape and also difficult to control the etching process. According to the present invention, variations in signal amounts of an SEM image are utilized to compute three-dimensional shape data on the pattern associated with the etching process steps, whereby the three-dimensional shape is quantitatively evaluated. Besides, determination of etching process conditions and process control are performed based on the three-dimensional shape data obtained. The present invention makes it is possible to quantitatively evaluate the three-dimensional shape of the etched pattern in a non-destructive manner. Further, the efficiency of determining the etching process conditions and a stable etching process can be realized.
摘要:
In order to enable the most suitable image processing condition to be set as one in which a dispersion in brightness between comparing images caused by object to be inspected and an image detecting system is not applied as a false information, in the present invention, there is obtained a noise characteristic of a secondary electron image caused by the image detecting system is calculated, the most suitable image processing parameters are determined depending on the object to be inspected on the basis of the characteristic, and its comparing processing is performed by using the noise characteristic and the image of the object to be inspected, thereby a dispersion in process for the object to be inspected is evaluated.
摘要:
Conventionally, there is no method for quantitatively evaluating the three-dimensional shape of an etched pattern in a non-destructive manner and it takes much time and costs to determine etching conditions. With the conventional length measuring method only, it has been impossible to detect an abnormality in the three-dimensional shape and also difficult to control the etching process.According to the present invention, variations in signal amounts of an SEM image are utilized to compute three-dimensional shape data on the pattern associated with the etching process steps, whereby the three-dimensional shape is quantitatively evaluated. Besides, determination of etching process conditions and process control are performed based on the three-dimensional shape data obtained.The present invention makes it is possible to quantitatively evaluate the three-dimensional shape of the etched pattern in a non-destructive manner. Further, the efficiency of determining the etching process conditions and a stable etching process can be realized.
摘要:
The present invention relates to a method and apparatus for measuring a three-dimensional profile using a SEM, capable of accurately measuring the three-dimensional profile of even a flat surface or a nearly vertical surface based on the inclination angle dependence of the amount of secondary electron image signal detected by the SEM. Specifically, a tilt image obtaining unit obtains a tilt image (a tilt secondary electron image) I(2) of flat regions a and c1 on a pattern to be measured by using an electron beam incident on the pattern from an observation direction φ(2). Then, profile measuring units presume the slope (or surface inclination angle) at each point on the pattern based on the obtained tilt image and integrate successively each presumed slope value (or surface inclination angle value) to measure three-dimensional profiles S2a and S2c. This arrangement allows a three-dimensional profile to be accurately measured.
摘要:
A pattern inspection method which irradiates a charged particle beam onto a surface of a specimen on which a pattern is formed, simultaneously detecting with plural sensors secondary particles emanated from the surface of the specimen by the irradiation, adding signals outputted from each sensor of the plural sensors which simultaneously detected the secondary particles, obtaining an image of the surface of the specimen on which the pattern is formed from the added signals and processing the image to detect a defect of the pattern.