摘要:
A method for fabricating a transistor with uniaxial stress channels includes depositing an insulating layer onto a substrate, defining bars within the insulating layer, recessing a channel into the substrate, growing a first semiconducting material in the channel, defining a gate stack over the bars and semiconducting material, defining source and drain recesses and embedding a second semiconducting material into the source and drain recesses.
摘要:
A structure includes a substrate; a transistor disposed over the substrate, the transistor comprising a fin comprised of Silicon that is implanted with Carbon; and a gate dielectric layer and gate metal layer overlying a portion of the fin that defines a channel of the transistor. In the structure a concentration of Carbon within the fin is selected to establish a desired voltage threshold of the transistor.
摘要:
A field effect transistor device includes a gate stack disposed on a substrate a first contact portion disposed on a first distal end of the gate stack, a second contact portion disposed on a second distal end of the gate stack, the first contact portion disposed a distance (d) from the second contact portion, and a third contact portion having a width (w) disposed in a source region of the device, the distance (d) is greater than the width (w).
摘要:
A field effect transistor device includes a gate stack portion disposed on a substrate, and a channel region in the substrate having a depth partially defined by the gate stack portion and a silicon region of the substrate, the silicon region having a sloped profile such that a distal regions of the channel region have greater depth than a medial region of the channel region.
摘要:
A method for fabricating a field effect transistor device includes forming a first conducting channel and a second conducting channel, forming a first gate stack on the first conducting channel to partially define a first device, forming second gate stack on the second conducting channel to partially define a second device, implanting ions to form a source region and a drain region connected to the first conducting channel and the second conducting channel, forming a masking layer over second device, a portion of the source region and a portion of the drain region, performing a first annealing process operative to change a threshold voltage of the first device, removing a portion of the masking layer to expose the second device, and performing a second annealing process operative to change the threshold voltage of the first device and a threshold voltage of the second device.
摘要:
A method for inducing a tensile stress in a channel of a field effect transistor (FET) includes forming a nitride film over the FET; forming a contact hole to the FET through the nitride film; and performing ultraviolet (UV) curing of the nitride film after forming the contact hole to the FET through the nitride film, wherein the UV cured nitride film induces the tensile stress in the channel of the FET.
摘要:
After planarization of a gate level dielectric layer, a dummy structure is removed to form a recess. A first conductive material layer and an amorphous metal oxide are deposited into the recess area. A second conduct material layer fills the recess. After planarization, an electrical antifuse is formed within the filled recess area, which includes a first conductive material portion, an amorphous metal oxide portion, and a second conductive material portion. To program the electrical antifuse, current is passed between the two terminals in the pair of the conductive contacts to transform the amorphous metal oxide portion into a crystallized metal oxide portion, which has a lower resistance. A sensing circuit determines whether the metal oxide portion is in an amorphous state (high resistance state) or in a crystalline state (low resistance state).
摘要:
In one embodiment, the method for forming a complementary metal oxide semiconductor (CMOS) device includes providing a semiconductor substrate including a first device region and a second device region. An n-type conductivity semiconductor device is formed in one of the first device region or the second device region using a gate structure first process, in which the n-type conductivity semiconductor device includes a gate structure having an n-type work function metal layer. A p-type conductivity semiconductor device is formed in the other of the first device region or the second device region using a gate structure last process, in which the p-type conductivity semiconductor device includes a gate structure including a p-type work function metal layer.
摘要:
A passive device structure includes an unpatterned metal gate layer formed in a passive device region of a semiconductor device; an insulator layer formed upon the unpatterned metal gate layer; a semiconductor layer formed upon the insulator layer; and one or more metal contact regions formed in the semiconductor layer; wherein the insulator layer prevents the metal gate layer as serving as a leakage current path for current flowing through a passive device defined by the semiconductor layer and the one or more metal contact regions.
摘要:
Multi-crystalline silicon processing techniques are provided. In one aspect, a method for roughening a multi-crystalline silicon surface is provided. The method includes the following steps. The multi-crystalline silicon surface is coated with a diblock copolymer. The diblock copolymer is annealed to form nanopores therein. The multi-crystalline silicon surface is etched through the nanopores in the diblock copolymer to roughen the multi-crystalline silicon surface. The diblock copolymer is removed. A multi-crystalline silicon substrate with a roughened surface having a plurality of peaks and troughs is also provided, wherein a distance from one peak to an adjacent peak on the roughened surface is from about 20 nm to about 400 nm.