摘要:
Transistors, methods of manufacturing thereof, and image sensor circuits with reduced random telegraph signal (RTS) noise are disclosed. In one embodiment, a transistor includes a channel disposed between two isolation regions in a workpiece. The channel has edge regions proximate the isolation regions and a central region between the edge regions. The transistor includes a gate dielectric disposed over the channel, and a gate disposed over the gate dielectric. The transistor includes a voltage threshold modification feature proximate the edge regions configured to increase a voltage threshold of the transistor proximate edge regions relative to the central region of the channel.
摘要:
The active pixel cell structures and methods of preparing such structures described above enable reduction of dark current and white cell counts for active pixel cells. The process of preparing active pixel cell structures introduces stress on the substrate, which could lead to increased dark current and white cell counts of active pixel cells. By depositing a stress layer as part of a pre-metal dielectric layer with a stress that counters the stress induced, both the dark current and the white cell counts can be reduced. If the transistors of the active pixel cells are NMOS, the carrier mobility can also be increased by a tensile stress layer. Raman Spectroscopy can be used to measure the stress exerted on the substrate prior to the deposition of the stress layer.
摘要:
A photosensitive device is disclosed which comprises a semiconductor substrate, at least one reverse biased device, such as a P-N junction diode formed in the semiconductor substrate, and at least one photosensitive layer disposed above the semiconductor substrate and substantially covering the reverse biased device, the photosensitive layer releasing electrons and holes when struck by photons, wherein the photon generated electrons and holes in the photosensitive layer reach the reverse biased device and create a combination current therein when a light shines thereon.
摘要:
The present disclosure provides an image sensor semiconductor device. The semiconductor device includes a semiconductor substrate having a first type of dopant; a semiconductor layer having a second type of dopant different from the first type of dopant and disposed on the semiconductor substrate; and an image sensor formed in the semiconductor layer.
摘要:
A process for making improved borderless contact structure to salicide field effect transistors (FETs) has been achieved. Salicide FETs are formed on device areas surrounded by a shallow trench isolation (STI) using a first rapid thermal anneal (RTA-1) to form a metal silicide on the source/drain contacts and the gate electrodes, and a second rapid thermal anneal (RTA-2) is delayed until after forming a borderless contact opening structures to the source/drain areas of the FETs. An etch stop (Si3N4) layer and an interlevel dielectric (ILD) layer is deposited, and borderless contact openings, extending over the STI, are etched in the ILD and etch stop layers to the source/drain areas. The contact openings across the substrate must be over-etched to insure that all contacts are open. This results in over-etched region in the STI at the source/drain-STI interface that result in source/drain-to-substrate shorts when metal plugs are formed in the contact openings.
摘要:
A process for manufacturing a thin film transistor for use in a CMOS SRAM circuit is described. A key feature is the formation of two different photoresist masks from the same optical mask. The first photoresist mask is generated using a normal amount of actinic radiation during exposure and is used to protect the gate region during source and drain formation through ion implantation. The second photoresist mask is aligned relative to the gate in exactly the same orientation as the first mask but is given a reduced exposure of actinic radiation. This results, after development, in a slightly larger mask which is used during etching to form the oxide cap that will protect the channel area during the subsequent silicidation step. Making the cap slightly wider than the channel ensures that small lengths of the source and the drain regions that abut the channel are not converted to silicide. Thus, the finished device continues to act as a thin film transistor, but has greatly reduced source and drain resistances.
摘要:
A method is achieved for making TFT-load static random access memory (SRAM) cells where the thin film transistor (TFT) gate electrodes are made from an electrical conductor. At the same time, portions of the conductor between P and N doped polysilicon interconnections eliminate the P/N junction. Ohmic contacts are formed while avoiding additional processing steps. N-channel FET gate electrodes are formed from an N.sup.+ doped first polysilicon layer having a first insulating layer thereon. Second polySi interconnections are formed with a second insulating layer thereon. First contact openings are etched in the first and second insulating layers to the N.sup.+ doped FET gate electrodes, and a patterned conductor (TiN, TiSi.sub.2) forms the P-channel TFT gate electrodes and concurrently forms portions over and in the first contact openings. A TFT gate oxide is formed and second contact openings are etched over the first contact openings to the conductor. An N.sup.- doped third polySi layer is deposited, selectively doped P.sup.+ and patterned to form the TFT N.sup.- doped channel, the P.sup.+ doped source/drains, and the interconnection in the contact openings to the N-FET gate electrodes. The conductor at the interface between the P/N polySi forms essentially ohmic contacts, thereby eliminating the P/N junction and improving circuit performance.
摘要:
A method for fabricating buried metal plug structures for multi-polysilicon layer interconnects and for concurrently making metal plugs on semiconductor integrated circuits, such as DRAM and SRAM, was achieved. The method involved forming contact opening in an insulating layer over opening in a patterned polysilicon layer. The opening in the polysilicon layer aligned over source/drain contact areas on the substrate and providing a means for forming self-aligned contact openings. Buried metal plugs in the contact openings form interconnects between the polysilicon layer and the source/drains. And, by merging the process steps, concurrently forming metal plug interconnects for contacts to semiconductor devices and first level metal. The process is applicable to the formation of bit line contacts on DRAM and SRAM circuits and simultaneously form the peripheral contact on the chip.
摘要:
A multi-layer polysilicon resistor and a method by which the multi-layer polysilicon resistor is formed. A minimum of two polysilicon layers is formed upon an insulating layer, the insulating layer in turn being formed upon a semiconductor substrate. The first polysilicon layer is formed to a first thickness at a first deposition temperature. The second polysilicon layer is formed directly upon the first polysilicon layer. The second polysilicon layer is formed to a second thickness at a second deposition temperature. The two deposition temperatures are in the range of about 450 degrees centigrade to about 620 degrees centigrade, and the difference in temperature between the first deposition temperature and the second deposition temperature is a minimum of 10 degrees centigrade.
摘要:
A device includes a semiconductor substrate, a well region in the semiconductor substrate, and a Metal-Oxide-Semiconductor (MOS) device. The MOS device includes a gate dielectric overlapping the well region, a gate electrode over the gate dielectric, and a source/drain region in the well region. The source/drain region and the well region are of opposite conductivity types. An edge of the first source drain region facing away from the gate electrode is in contact with the well region to form a junction isolation.