摘要:
In a manufacturing sequence for forming metallization levels of semiconductor devices, out-gassing of volatile components after an etch process may be initiated immediately after the etch process, thereby reducing the probability of creating contaminants in other substrates and transport carriers during transport activities. Consequently, the defect rate of deposition-related irregularities in the metallization level may be reduced.
摘要:
By forming a hardmask layer in combination with one or more cap layers, undue exposure of a sensitive dielectric material to resist stripping etch ambients may be reduced and integrity of the hardmask may also be maintained so that the trench etch process may be performed with a high degree of etch selectivity during the patterning of openings in a metallization layer of a semiconductor device.
摘要:
By forming metal capacitors in the metallization structures of semiconductor devices, complex manufacturing sequences in the device level may be avoided. The process of manufacturing the metal capacitors may be performed on the basis of well-established patterning regimes of modern metallization systems by using appropriately selected etch stop materials, which may enable a high degree of compatibility for forming via openings in a metallization layer while providing a capacitor dielectric of a desired high dielectric constant in the capacitor.
摘要:
By providing a protection layer for suppressing stress relaxation in a tensile-stressed dielectric material during a dual stress liner approach, performance of N-channel transistors may be increased, while nevertheless maintaining a high degree of compatibility with conventional dual stress liner approaches.
摘要:
By encoding process-related non-uniformities, such as different height levels, which may be caused by CMP or other processes during the fabrication of complex device levels, such as metallization structures, respective focus parameter settings may be efficiently evaluated on the basis of well-established CD measurement techniques.
摘要:
During the formation of an underfill material provided between a carrier substrate and a semiconductor chip, a common motion of particles contained in the underfill material is initiated towards the semiconductor chip, thereby adjusting the thermal and mechanical behavior of the underfill material. For instance, by applying an external force, such as gravity, a depletion zone with respect to the filler particles may be created in the vicinity of the carrier substrate, while a high particle concentration may be obtained in the vicinity of the semiconductor chip. Hence, thermal and mechanical stress redistribution by means of the underfill material may be enhanced.
摘要:
In a three-dimensional chip configuration, a heat spreading material may be positioned between adjacent chips and also between a chip and a carrier substrate, thereby significantly enhancing heat dissipation capability. Furthermore, appropriately sized and positioned through holes in the heat spreading material may enable electrical chip-to-chip connections, while responding thermally conductive connectors may extend to the heat sink without actually contacting the corresponding chips.
摘要:
In a metallization system of a complex semiconductor device, metal pillars, such as copper pillars, may be formed in a nail-like configuration in order to reduce the maximum mechanical stress acting on the metallization system while providing a required contact surface for connecting to the package substrate. The nail-like configuration may be obtained on the basis of appropriately configured resist masks.
摘要:
The thickness of drain and source areas may be reduced by a cavity etch used for refilling the cavities with an appropriate semiconductor material, wherein, prior to the epitaxial growth, an implantation process may be performed so as to allow the formation of deep drain and source areas without contributing to unwanted channel doping for a given critical gate height. In other cases, the effective ion blocking length of the gate electrode structure may be enhanced by performing a tilted implantation step for incorporating deep drain and source regions.
摘要:
The introduction of dielectric material of enhanced mechanical stability, such as silicon dioxide or fluorine-doped silicon dioxide, into the via level of a low-k interconnect structure provides an increased overall mechanical stability, especially during the packaging of the device. Consequently, cracking and delamination, as frequently observed in high end low-k interconnect structures, may significantly be reduced, even if organic package substrates are used.