Abstract:
A heat transfer apparatus for a gas turbine engine includes: a component having a wall structure defining a flow bounding surface; a chamber formed in the component, the chamber including a wicking structure, a vapor channel, and a working fluid.
Abstract:
An aviation bypass valve for use in a heat exchanger apparatus, including a shape memory alloy material. The heat exchanger apparatus further including an air-cooled oil cooler disposed in a bypass fan duct of an aircraft engine. The heat exchanger apparatus including a bypass valve in fluid communication with the air cooled oil cooler. The bypass valve including a valve body, a piston disposed in the valve body and moveable therein and an actuation component. The actuation component including a shape memory alloy. The actuation component responsive to a change in at least one of a thermal condition and a pressure exerted thereon so as to move the piston, thereby opening and closing the bypass valve.
Abstract:
A heat sink with shape-optimized fins provides for improved heat transfer. Synthetic jets create vortices which enhance heat transfer and cooling of downstream fins, while the shape of the fins limits pressure drop in the flow over the cooling fins.
Abstract:
A flow control assembly for controlling cooling flow of a turbine engine is provided. The flow control assembly includes a first flow control device having a first sidewall and a second sidewall. The first sidewall is coupled to a compressor vane and is configured to define a first flow path from a compressor to a turbine vane. The second sidewall is coupled to a compressor vane and is configured to define a second flow path from the compressor to a turbine blade. A second flow control device is coupled to the compressor and includes an orifice device coupled to the compressor vane and a meter device coupled to the orifice, wherein the orifice is configured to direct a cooling flow to the meter device. A controller is configured to control the meter device to facilitate regulating the cooling flow into at least one of the first flow path and the second flow path.
Abstract:
A decongealing channel for use in a heat exchanger apparatus, including a supersaturated solution contained therein and an actuation component in fluid communication with a lubricating fluid coupled to the decongealing channel. The actuation component is responsive to a change in pressure exerted thereon by the lubricating fluid so as to actuate an exothermic response in the supersaturated solution. The heat exchanger apparatus is disposed in a bypass fan duct of an aircraft engine. The heat exchanger apparatus including a manifold portion, one or more flow through openings extending therethrough the manifold portion to define one or more flow through channels having contained therein the lubricating fluid. In addition, the manifold portion including one or more additional openings extending therethrough to define one or more decongealing channels. Further disclosed is an engine including the heat exchanger apparatus and a method of decongealing a lubricating fluid in the heat exchanger apparatus.
Abstract:
A system is disclosed. The system includes a thermally conductive enclosure bounding an interior cavity, a metallic cell wall structure disposed within the cavity, in thermal communication with the enclosure, and defining a plurality of cells, and a phase change material disposed within the cells and in thermal communication with the cell walls. The plurality of cells have a cell width less than about 5 millimeters, and the cell wall thickness of the cell wall structure is in a range from about 0.25 millimeter to about 1 millimeter.
Abstract:
A system is disclosed. The system includes a thermally conductive enclosure bounding an interior cavity, a metallic cell wall structure disposed within the cavity, in thermal communication with the enclosure, and defining a plurality of cells, and a phase change material disposed within the cells and in thermal communication with the cell walls. The plurality of cells have a cell width less than about 5 millimeters, and the cell wall thickness of the cell wall structure is in a range from about 0.25 millimeter to about 1 millimeter.
Abstract:
A heat exchanger includes a core defining a first passageway configured for a first fluid to flow through and a second passageway configured for a second fluid to flow through. The core includes a plurality of unit cells coupled together. Each unit cell of the plurality of unit cells includes a sidewall at least partly defining a first passageway portion, a second passageway portion, a plurality of first openings for the first fluid to flow through, and a plurality of second openings for the second fluid to flow through. Each unit cell of the plurality of unit cells is configured to enable the first fluid to combine and divide in the first passageway portion. Each unit cell is further configured to enable the second fluid to combine and divide in the second passageway portion.
Abstract:
A heat exchanger apparatus including a surface cooler and a passive automatic retraction and extension system coupled to the surface cooler. The surface cooler having disposed therein one or more fluid flow channels configured for the passage therethrough of a heat transfer fluid to be cooled. The heat transfer fluid in a heat transfer relation on an interior side of said one or more fluid flow channels. The surface cooler including a plurality of fins projecting from an outer surface thereof. The passive automatic retraction and extension system including a thermal actuation component responsive to a change in temperature of at least one of the heat transfer fluid and a cooling fluid flow so as to actuate a change in a geometry of the surface cooler. Further disclosed is an engine including the heat exchanger apparatus.
Abstract:
A system in one embodiment includes a detection unit, a boil-off auxiliary power unit, and a controller. The detection unit is configured to detect a characteristic of a boil-off gas stream from a cryotank configured to hold a cryogenic fluid. The boil-off auxiliary power unit is configured to receive the boil-off gas stream and use the boil-off gas stream to provide auxiliary power to a vehicle system. The controller is configured to acquire information from the detection unit corresponding to the characteristic; determine, using the information acquired from the detection unit, an available boil-off auxiliary energy that is available from the boil-off auxiliary power unit; determine a mode of operation of the vehicle system; determine a required auxiliary energy for the vehicle system; and to operate the auxiliary power unit based on the available boil-off auxiliary energy, the mode of operation, and the required auxiliary energy.