摘要:
A chip package structure including a first substrate, a second substrate, a plurality of bumps, a first B-staged adhesive layer and a second B-staged adhesive layer is provided. The first substrate has a plurality of first bonding pads. The second substrate has a plurality of second bonding pads, and the second substrate is disposed above the first substrate. The bumps are disposed between the first substrate and the second substrate, wherein each of the first bonding pads is respectively electrically connected to one of the second bonding pads via one of the bumps. The first B-staged adhesive layer is adhered on the first substrate. The second B-staged adhesive layer is adhered between the first B-staged adhesive layer and the second substrate, wherein the first B-staged adhesive layer and the second B-staged adhesive layer encapsulate the bumps.
摘要:
The present invention provides a stacked chip package structure with leadframe having inner leads with transfer pad, comprising: a leadframe composed of a plurality of inner leads arranged in rows facing each other, a plurality of outer leads, and a die pad, wherein the die pad is provided between the plurality of inner leads arranged in rows facing each other and vertically distant from the plurality of inner leads; an offset chip-stacked structure formed with a plurality of chips stacked together, the offset chip-stacked structure being set on the die pad and electrically connected to the plurality of inner leads arranged in rows facing each other; and an encapsulant covering the offset chip-stacked structure and the leadframe, the plurality of outer leads extending out of said encapsulant; the improvement of which being that the inner leads of the leadframe are coated with an insulating layer and a plurality of metal pads are selectively formed on the insulating layer.
摘要:
The present invention provides a chip-stacked package structure with leadframe having multi-piece bus bar, comprising: a leadframe composed of a plurality of inner leads arranged in rows facing each other, a plurality of outer leads, and a die pad, wherein the die pad is provided between the plurality of inner leads arranged in rows facing each other and is vertically distant from the plurality of inner leads; a chip-stacked structure formed with a plurality of chips stacked together and provided on the die pad, the plurality of chips and the plurality of inner leads arranged in rows facing each other being electrically connected with each other; and an encapsulant provided to cover the chip-stacked structure and the leadframe; wherein the leadframe comprises at least a bus bar provided between the plurality of inner leads arranged in rows facing each other and the die pad, the bus bar being formed by multiple pieces.
摘要:
A wafer treating method for making adhesive chips is provided. A liquid adhesive with two-stage property is coated on a surface of a wafer. Then, the wafer is pre-cured to make the liquid adhesive transform an adhesive film having B-stage property which has a glass transition temperature between −40 and 175 degree C. for example. After positioning the wafer, the wafer is singulated to form a plurality of chips with adhesive for chip-to-chip stacking, chip-to-substrate or chip-to-lead frame attaching.
摘要:
A chip package structure including a first substrate, a second substrate, bumps and adhesive blocks is provided. The first substrate has first bonding pads. The second substrate is disposed above the first substrate and has second bonding pads. The bumps are respectively arranged on the first bonding pads or the second bonding pads, and the second substrate is electrically connected to the first substrate through the bumps. The adhesive material with B-stage property are respectively arranged between the first bonding pads and the second bonding pads and enclose each bump. The bumps can be stud bumps or plating bumps.
摘要:
A manufacturing process for chip package without core is disclosed. First of all, a conductive layer with a first surface and a second surface is provided. A first film is formed onto the first surface, and the conductive layer is patterned to form a patterned circuit layer. A solder resistance layer is formed on the patterned circuit layer and then patterned to expose parts of the patterned circuit layer. After a second film is formed on the solder resistance layer and the first film is removed, a chip is disposed on the first surface and electrically connected to the patterned circuit layer. A molding compound is formed to cover the patterned circuit layer and fix the chip onto the patterned circuit layer. After that, the second film is removed.