摘要:
The present invention provides a method for manufacturing a semiconductor device with a bottom anti-reflective coating (BARC) that acts as an etch stop layer and does not need to be removed. In one embodiment, electrical devices are formed on a semiconductor substrate. Contacts are then formed for each electrical device and a partially UV transparent BARC is then deposited. An inter-layer dielectric (ILD) layer is then formed and then covered with photoresist. A top ARC (TARC) is then added and the photoresist is then photolithographically processed and subsequently developed. The TARC, ILD, and BARC layers are then selectively etched down to the device contacts forming local interconnects. The photoresist and TARC are later removed, but the BARC does not require removal due to its optical transparency.
摘要:
An insulated trench isolation structure with large and small trenches of differing widths is formed in a semiconductor substrate with improved planarity using a simplified reverse source/drain planarization mask. Embodiments include forming large trenches and refilling them with an insulating material which also covers the substrate surface, masking the areas above the large trenches, etching to remove substantially all of the insulating material on the substrate surface and polishing to planarize the insulating material above the large trenches. Small trenches and peripheral trenches surrounding the large trenches are then formed, refilled with insulating material, and planarized. Since the large trenches are formed prior to and separately from the small trenches, etching can be carried out after the formation of a relatively simple planarization mask over only the large trenches, and not the small trenches. The use of a planarization mask with relatively few features having a relatively large geometry avoids the need to create and implement a complex and critical mask, thereby reducing manufacturing costs and increasing production throughput. Furthermore, because the large and small trenches are not polished at the same time, overpolishing is avoided, thereby improving planarity and, hence, the accuracy of subsequent photolithographic processing.
摘要:
A method of forming a small contact hole uses a bright field mask to form a small cylinder in a positive resist layer. A negative resist layer is formed around the small cylinder, and then etched or polished back to leave a top portion of the small cylinder exposed above the negative resist layer. The negative resist layer and the small cylinder (positive resist) are flood exposed to light, and then subject to a developer. What remains is a small contact hole located where the small cylinder was previously located.
摘要:
A method for fabricating a T-gate structure is provided. A structure is provided that has a silicon layer having a gate oxide layer, a protection layer over the gate oxide layer and a sacrificial layer over the protection layer. An opening is then formed in the sacrificial layer. A contact material is deposited over the sacrificial layer filling the opening with the contact material and forming a contact layer. Portions of the contact material outside a gate region are then removed. Finally, the sacrificial layer and portions of the protection layer and the gate oxide layer not forming a part of the T-gate structure are removed.
摘要:
In one embodiment, the present invention relates to a method of making a sub-lithographic structure involving the steps of providing a nitrogen rich film over a portion of a substrate; depositing a photoresist over the nitrogen rich film and the substrate, wherein the photoresist and the nitrogen rich film interact and form a thin desensitized resist layer around an interface between the photoresist and the nitrogen rich film; exposing the photoresist to radiation; developing the photoresist exposing the thin desensitized resist layer; directionally etching a portion of the thin desensitized resist layer; and removing the nitrogen rich film leaving the sub-lithographic structure on the substrate.
摘要:
An insulated trench isolation structure with large and small trenches of differing widths is formed in a semiconductor substrate using a simplified reverse source/drain planarization mask. Embodiments include forming trenches and refilling them with an insulating material which also covers a main surface of the substrate, polishing to remove an upper portion of the insulating material and to planarize the insulating material above the small trenches, furnace annealing to densify and strengthen the remaining insulating material, masking the insulating material above the large trenches, isotropically etching the insulating material, and polishing to planarize the insulating material. Since the insulating material is partially planarized and strengthened prior to etching, etching can be carried out after the formation of a relatively simple planarization mask over only the large trenches, and not the small trenches. Because the features of the planarization mask are relatively few and have a relatively large geometry, the present invention avoids the need to create and implement a critical mask, enabling production costs to be reduced and manufacturing throughput to be increased.
摘要:
An insulated trench isolation structure is formed in a semiconductor substrate omitting a barrier nitride polish stop layer while avoiding substrate damage, thereby simplifying trench formation and improving planarity. After trench fill, polishing is conducted to effect substantial planarization without exposing the substrate surface, thereby avoiding substrate damage. Etching is then conducted to expose the substrate surface. The omission of the barrier nitride polish stop avoids generation of a topographical step at the substrate/trench fill interface, thereby enhancing the accuracy of subsequent photolithographic techniques in forming features with minimal dimensions.
摘要:
The present invention discloses a system and method for designing grating structures for use in situ scatterometry during the photolithography process to detect a photoresist defect (e.g., photoresist erosion, pattern collapse or pattern bending). In one embodiment, a grating structure may be designed with a pitch or critical dimensional smaller than the one used for the semiconductor device. The pitch and the critical dimension of the grating structure may be varied. In another embodiment, the present invention provides for a feedback mechanism between the in situ scatterometry process and the photolithography process to provide an early warning of the existence of a photoresist defect. If a defect is detected on the wafer, the wafer may be sent to be re-worked or re-patterned, thereby avoiding scrapping the entire wafer.
摘要:
An exemplary embodiment relates to a phase shifting mask including a glass substrate layer and an amorphous carbon absorber layer located above the glass substrate layer. The amorphous carbon absorber layer includes apertures through which light passes unaltered to the glass substrate layer.
摘要:
The present invention provides a method to fabricate an organic memory device, wherein the fabrication method includes forming a lower electrode, depositing a passive material over the surface of the lower electrode, applying an organic semiconductor material over the passive material, and operatively coupling the an upper electrode to the lower electrode through the organic semiconductor material and the passive material. Patterning of the organic semiconductor material is achieved by depositing a silicon-based resist over the organic semiconductor, irradiating portions of the silicon-based resist and patterning the silicon-based resist to remove the irradiated portions of the silicon-based resist. Thereafter, the exposed organic semiconductor can be patterned, and the non-irradiated silicon-based resist can be stripped to expose the organic semiconductor material that can be employed as a memory cell for single and multi-cell memory devices. A partitioning component can be integrated with the memory device to facilitate stacking memory devices and programming, reading, writing and erasing memory elements.