摘要:
In a first aspect, a method of forming a metal-insulator-metal (“MIM”) stack is provided, the method including: (1) forming a dielectric material having an opening and a first conductive carbon layer within the opening; (2) forming a spacer in the opening; (3) forming a carbon-based switching material on a sidewall of the spacer; and (4) forming a second conductive carbon layer above the carbon-based switching material. A ratio of a cross sectional area of the opening in the dielectric material to a cross sectional area of the carbon-based switching material on the sidewall of the spacer is at least 5. Numerous other aspects are provided.
摘要:
The present invention relates to a method for producing a vertical interconnect structure, a memory device and an associated production method, in which case, after the formation of a contact region in a carrier substrate a catalyst is produced on the contact region and a free-standing electrically conductive nanoelement is subsequently formed between the catalyst and the contact region and embedded in a dielectric layer.
摘要:
In a first aspect, an MIM stack is provided that includes (1) a first conductive layer comprising a first metal-silicide layer and a second metal-silicide layer; (2) a resistivity-switching layer comprising a metal oxide layer formed above the first conductive layer; and (3) a second conductive layer formed above the resistivity-switching layer. A memory cell may be formed from the MIM stack. Numerous other aspects are provided.
摘要:
The present invention relates to a method for producing a vertical interconnect structure, a memory device and an associated production method, in which case, after the formation of a contact region in a carrier substrate a catalyst is produced on the contact region and a free-standing electrically conductive nanoelement is subsequently formed between the catalyst and the contact region and embedded in a dielectric layer.
摘要:
A semiconductor power switch and method is disclosed. In one Embodiment, the semiconductor power switch has a source contact, a drain contact, a semiconductor structure which is provided between the source contact and the drain contact, and a gate which can be used to control a current flow through the semiconductor structure between the source contact and the drain contact. The semiconductor structure has a plurality of nanowires which are connected in parallel and are arranged in such a manner that each nanowire forms an electrical connection between the source contact and the drain contact.
摘要:
In some embodiments, a memory cell is provided that includes (1) a bipolar storage element formed from a metal-insulator-metal (MIM) stack including (a) a first conductive layer; (b) a reversible resistivity switching (RRS) layer formed above the first conductive layer; (c) a metal/metal oxide layer stack formed above the first conductive layer; and (d) a second conductive layer formed above the RRS layer and the metal/metal oxide layer stack; and (2) a steering element coupled to the storage element. Numerous other aspects are provided.
摘要:
An integrated circuit includes an array of memory cells and a doped semiconductor line formed in a semiconductor substrate. The doped semiconductor line is coupled to a row of memory cells. The integrated circuit includes conductive cladding contacting the doped semiconductor line.
摘要:
A memory device in a 3-D read and write memory includes memory cells. Each memory cell includes a resistance-switching memory element (RSME). The RSME has first and second resistance-switching layers on either side of a conductive intermediate layer, and first and second electrodes at either end of the RSME. The layers can be provided in a lateral arrangement, such as an end-to-end, face-to-face, L-shaped or U-shaped arrangement. In a set or reset operation of the memory cell, an electric field is applied across the first and second electrodes. An ionic current flows in the resistance-switching layers, contributing to a switching mechanism. An electron flow, which does not contribute to the switching mechanism, is reduced due to scattering by the conductive intermediate layer, to avoid damage to the steering element.
摘要:
A memory device in a 3-D read and write memory includes memory cells. Each memory cell includes a resistance-switching memory element (RSME) in series with a steering element. The RSME has first and second resistance-switching layers on either side of a conductive intermediate layer, and first and second electrodes at either end of the RSME. The first and second resistance-switching layers can both have a bipolar or unipolar switching characteristic. In a set or reset operation of the memory cell, an electric field is applied across the first and second electrodes. An ionic current flows in the resistance-switching layers, contributing to a switching mechanism. An electron flow, which does not contribute to the switching mechanism, is reduced due to scattering by the conductive intermediate layer, to avoid damage to the steering element. Particular materials and combinations of materials for the different layers of the RSME are provided.
摘要:
In a first aspect, a method of forming a metal-insulator-metal (“MIM”) stack is provided, the method including: (1) forming a dielectric material having an opening and a first conductive carbon layer within the opening; (2) forming a spacer in the opening; (3) forming a carbon-based switching material on a sidewall of the spacer; and (4) forming a second conductive carbon layer above the carbon-based switching material. A ratio of a cross sectional area of the opening in the dielectric material to a cross sectional area of the carbon-based switching material on the sidewall of the spacer is at least 5. Numerous other aspects are provided.