Abstract:
The following operations are performed in order to allow particles suspended in a processing chamber to be detected using a single observation window and an optical system formed as a single unit and in order to provide precise detection of very weak particle-scattered light: when a desired film-forming/processing operation is being performed on a body being processed in a processing chamber, a beam that is P-polarized and that is intensity amplified at a frequency different from an excitation source frequency and integer multiples thereof is passed through an observation window sloped to form a Brewster angle relative to the P-polarized entry beam; back-scattered light scattered by particles in the processing chamber passes through the same observation window and received and imaged by a detection optical system; the frequency component described above and the intensity-modulated beam wavelength component are detected from the received light signal; and these detected components and the image information imaged as described above is used to determine the quantity, sizes, and distribution of the particles.
Abstract:
A pump apparatus has an electric motor having an impeller fixed to a rotating axis thereof driven based on signals from an injection control unit to rotate in a normal direction and, then, switched to rotate in a reverse direction so that, when the motor is rotated in the normal direction, the washer liquid is sucked from a second intake conduit and discharged via a first discharge port from a first injection nozzle and, when the motor is rotated in the reverse direction, the washer liquid is sucked from a first intake conduit and discharged via a second discharge port from a second injection nozzle. Since the washer liquid is not injected at the same time from the first and second injection nozzles, an injection amount per unit time of the washer liquid is relatively small, which makes the pump apparatus more compact.
Abstract:
An optical transmission device which reduces optical noise in an optical transmission system. The optical transmission device includes a core light amplifying unit and a first buffer light amplifying unit for amplifying a first signal light from a first transmission path and an amplified second signal light from the core light amplifying unit. The first buffer light amplifying unit supplies the core light amplifying unit with the first signal light, and supplies the first transmission path with the amplified second signal light. Also provided is a second buffer light amplifying unit for amplifying a second signal light from a second transmission path and an amplified first signal light from the core light amplifying unit. The second buffer light amplifying unit supplies the core light amplifying unit with the second signal light, and supplies the second transmission path with the amplified first signal light.
Abstract:
The present invention is to detect particles suspended in a processing chamber using a single observation window and an optical system formed as a single unit and to provide precise detection of very weak particle-scattered light. When a thin film is being formed on an object to be processed in a processing chamber or if such a thin film is being processed, an optical guide module guides a laser beam from a laser light source separated from a laser illumination/scattered light detection optical system. The laser beam is guided to the laser illumination/scattered light detection optical system. The processing chamber is illuminated by the laser illumination/scattered light detection optical system via an observation window. The illumination light is scattered by particles in the processing chamber. Back-scattered light passing through the observation window is detected by the laser illumination/scattered light detection optical system.
Abstract:
An optical transmission equipment for use in an optical transmission system, having an optical amplifier (10A), comprising: a first optical doped fiber (1A); a second optical doped fiber (1B); a third optical doped fiber (1C); an optical isolator (6) of bringing loss in the optical signal, being provided between the first optical doped fiber and the second optical doped fiber; a dispersion compensator (7) being provided between the second optical doped fiber and the third optical doped fiber; and a pumping light source (2) being optically connected to so that the optical doped fibers (1A, 1B, 1C) are excited in common.
Abstract:
An optical transmission system accomplishes optical transmission over a long distance by combining a multiplexing line terminal with optical amplifiers, linear repeaters, and regenerators with optical amplifiers combined together. The system also accomplishes the optical transmission over a short distance by directly connecting the linear terminals therebetween, with an electric-to-optic converter replaced by an electric-to-optic converter having a semiconductor amplifier, with an optic-toelectric converter by an optic-to-electric converter having an avalanche photodiode as light receiver, and with no use of any optical booster amplifier and optical preamplifier in the multiplexing line terminal. With these, the optical transmission system can be easily constructed depending on the transmission distance required.
Abstract:
According to the invention, the rear end of a preceding metal piece and a front end of a succeeding metal piece are heated, pressed and joined prior to the finishing hot rolling. An alternating magnetic field running through the metal pieces in the thickness direction thereof is generated in an end region on opposed faces of the respective metal pieces to perform heating. Another alternating magnetic field whose direction is reverse with respect to that of the former alternating magnetic field is partially generated in the end region on the opposed faces of the metal pieces and in either a region where the metal pieces exist or a region outside width ends of the metal pieces. This assures a uniform heating of the end region on the opposed faces of the metal pieces over their full width to reliably join the both metal pieces to each other.
Abstract:
A navigation apparatus stores road data which are formed by a network of internally stored road links and traveling costs corresponding to the respective ones of the internal road links. When the navigation apparatus receives traffic information corresponding to a specific external road link which is set for communication of traffic information, the apparatus identifies one or more internal links or portions thereof corresponding to the external link for which traffic information has been received, and the stored traveling costs are updated, on the basis of a conversion table. The traveling cost for an internal road link corresponding to a specific external link which is closed to traffic is updated to ".infin.". The apparatus searches for and identifies a route between an origin and a destination based on the updated traveling costs and the network of the road links. The internal links do not need to correspond directly to the external links, but rather may include more branch points for example. Traffic information of different types and for different links can be processed and assimilated for correspondence with the internal links.
Abstract:
There is provided a semiconductor element having a Schottky electrode which forms a Schottky junction with an active layer formed on a compound semiconductor substrate characterized in that a modified layer is formed in at least a portion of a region of the active layer on which region the Schottky electrode is formed and a vicinity of that region.
Abstract:
An optical repeater for realizing transmission of supervisory information of an optical fiber transmission system without the output power of an optical fiber amplifier being reduced, wherein a supervisory optical transmitter and optical receiver with a wavelength which is similar to the wavelength of the pumping light source of the optical fiber amplifier are mounted, and on the input side of the optical repeater, pumping light is multiplexed in the forward direction and a supervisory optical signal, which is multiplexed in wavelength and transmitted, is demultiplexed simultaneously by the first wavelength multi- and demultiplexer and they are received by the supervisory optical receiver, and on the output side of the optical repeater, pumping light is muitiplexed in the reverse direction and a supervisory optical signal outputted from the supervisory optical transmitter is multiplexed by the second wavelength multi- and demultiplexer.