摘要:
A memory device is disclosed that includes a plurality of word lines and a plurality of memory cells operating in one of a plurality of modes and coupled to at least one of the word lines. The memory device also includes a plurality of reference lines and reference cells. Each reference cell corresponds to one of the operating modes, supplies a reference current for the corresponding mode, and is coupled to at least one of the reference lines. A reference cell current from a reference cell can also be compared to a target range and, if outside the target range, the voltage level on a corresponding referece line can be adjusted accordingly such that the reference current falls within the target range (i.e., reference current trimming).
摘要:
A method for fabricating semiconductor device is provided. A high stress layer formed on, under or on both sides of the transistors of the semiconductor device is employed as a cap layer. A specific region is then defined through photo resistor mask, and the stress of the region is changed by ion implanting. Therefore, compressive stress and tensile stress occur on the high stress layer. According the disclosed method, the high stress layer may simultaneously improve the characteristics of the transistors formed on the same wafer. Further, the mobility of the carriers of the device is enhanced.
摘要:
A method for forming a gate. A gate oxide layer, a polysilicon layer and a barrier layer are subsequently formed on a substrate, on which an isolation structure is formed. A conductive layer is formed on the barrier layer by sputtering deposition using titanium silicide with a low silicon content as a target. A rapid thermal process (RTP) is performed to remove the polymer nodule formed by sputtering deposition. An anti-reflection layer is formed on the conductive layer. The anti-reflection layer, the conductive layer and the barrier layer are patterned by the etchant composed of chlorine/nitrogen/hexafluoroethane until the polysilicon layer is exposed. Using the anti-reflection layer, the conductive layer and the barrier layer as a mask, the exposed polysilicon layer and the gate oxide layer underlying the exposed polysilicon layer are removed by the etchant composed of chlorine/hydrogen bromide/helium/oxygen until the substrate is exposed and a gate is formed.
摘要:
A method of reducing the leakage current of a dielectric layer of a capacitor. A substrate having a dielectric layer formed thereon is disposed into a furnace. A first annealing step is performed for nucleation. A second annealing step is performed to control the number of the nuclei. A third annealing step is performed for grain growth.
摘要:
A method for forming a DRAM capacitor whose titanium nitride electrode is fabricated in a sequence of steps that results in a good step-coverage. Moreover, contamination of the titanium nitride layer and cross-diffusion between the titanium nitride layer and the dielectric film layer is reduced to a minimum. The method of forming the titanium nitride layer includes the steps of depositing a first titanium nitride layer over a dielectric film layer using a conventional physical vapor deposition process. Then, a second titanium nitride layer is deposited over the first titanium nitride layer using a collimated physical vapor deposition process.
摘要:
A method of fabricating a capacitor, comprising the steps of: providing a conductive layer over a semiconductor substrate having a transistor formed thereon to connect a source/drain region of the transistor; forming a hemispherical grained silicon layer over the conductive layer; using an implantation method to implant ions into the hemispherical grained silicon layer; performing a thermal treatment process to convert the ions into a barrier layer over the hemispherical grained silicon layer; performing a wet etching process to clean a surface of the barrier layer; forming a dielectric layer over the barrier layer and forming a top electrode over the dielectric layer.
摘要:
A method for forming a high capacitance charge storage structure that can be applied to a substrate wafer having MOS transistor already formed thereon. The method is to form an insulating layer above the substrate wafer. Next, a contact window exposing a source/drain region is formed in the insulating layer. Then, a tungsten suicide layer, which functions as a lower electrode for the charge storage structure, is formed over the substrate. Thereafter, a tungsten nitride layer is formed over the tungsten silicide layer, and then a dielectric layer is formed over the tungsten nitride layer. The dielectric layer is preferably a tantalum oxide layer. Finally, a titanium nitride layer, which functions as an upper electrode for the charge storage structure, is formed over the tantalum oxide layer.