摘要:
An electrochromic element wherein, in a colored state of the electrochromic element, a first average optical density in a first wavelength range of 450 to 470 nm, a second average optical density in a second wavelength range of 540 to 560 nm and a third average optical density in a third wavelength range of 630 to 650 nm have a fluctuation (difference of a maximum value and a minimum value of the first to third average optical densities) equal to or less than 0.5.
摘要:
A semiconductor device equipped with a fuel cell of the present invention includes a fuel cell and a semiconductor element, and the fuel cell includes an anode separator in which a flow channel for fuel is formed, a cathode separator in which a flow channel for oxidizer is formed, and a membrane electrode assembly interposed between the anode separator and the cathode separator. In the semiconductor device, the semiconductor element is formed on one of the principal surfaces of one separator selected from the anode separator and the cathode separator, and the semiconductor element and the selected separator are connected electrically. With this configuration of the semiconductor device equipped with a fuel cell, a more compact and versatile semiconductor device equipped with a fuel cell is provided.
摘要:
A non-volatile memory, which comprises an insulating substrate (11) that has a first electrode (18) that extends through the substrate from the front surface to the rear surface thereof; a second electrode (13) that is formed on one side of the insulating substrate (11); and a recording layer (12) that is clamped between the first electrode (18) and the second electrode (13) and whose resistance value varies when an electric pulse is applied across the first electrode (18) and the second electrode (13); wherein the insulating substrate (11) has a layered structure composed of an organic dielectric thin film (112) and an inorganic dielectric layer (111) that is thinner than the organic dielectric thin film (112); with the recording layer (12) being formed on the side on which the inorganic dielectric layer is formed. Use of this non-volatile memory increases the possible number of data writing cycles while saving power.
摘要:
A non-volatile memory, which comprises an insulating substrate (11) that has a first electrode (18) that extends through the substrate from the front surface to the rear surface thereof; a second electrode (13) that is formed on one side of the insulating substrate (11); and a recording layer (12) that is clamped between the first electrode (18) and the second electrode (13) and whose resistance value varies when an electric pulse is applied across the first electrode (18) and the second electrode (13); wherein the insulating substrate (11) has a layered structure composed of an organic dielectric thin film (112) and an inorganic dielectric layer (111) that is thinner than the organic dielectric thin film (112); with the recording layer (12) being formed on the side on which the inorganic dielectric layer is formed. Use of this non-volatile memory increases the possible number of data writing cycles while saving power.
摘要:
To provide an optical density-changing element which has excellent properties that it can be brought into a colored state by applying only a low voltage, that it shows a rapid response speed and becomes completely colorless when restored to a bleached state from the colored state, and which can undergo a change in optical density in response to an applied voltage, the optical density-changing element includes, on each of an anode and a cathode, a material capable of at least one of donating and accepting an electron and, as a result of at least one of donating and accepting the electron, undergoing a change in absorption spectrum in a visible region and a material undergoing substantially no change in absorption spectrum in the visible region, with potentials of these materials satisfying a specific relation defined in the specification.
摘要:
The semiconductor device of the present invention includes: particles or interface states for passing charge formed on a p-type silicon substrate via a barrier layer; and particles for holding charge formed above the charge-passing particles via another barrier layer. The charge-holding particles are different from the charge-passing particles in parameters such as the particle diameter, the capacitance, the electron affinity, and the sum of electron affinity and forbidden bandwidth, to attain swift charge injection and release as well as stable charge holding in the charge-holding particles.
摘要:
A silver halide photographic lightsensitive material comprising at least one silver halide photographic emulsion layer containing a silver halide photographic emulsion prepared by mixing a dispersion of silver halide grains, the silver halide grains exhibiting such spectral absorption maximum wavelength and light absorption intensity that, when the spectral absorption maximum wavelength is less than 500 nm, the light absorption intensity is 60 or more, while when the spectral absorption maximum wavelength is 500 nm or more, the light absorption intensity is 100 or more, with an emulsified dispersion, wherein the silver halide photographic emulsion, when agitated at 40° C. for 30 min, exhibits a variation of absorption spectrum integrated intensity ranging from 400 nm to 700 nm of 10% or less.
摘要:
A silver halide photographic emulsion which comprises at least one methine compound represented by the following formula (I): wherein X1 and X2 each represents an oxygen atom, a sulfur atom, a selenium atom, or N—R3, wherein R3 represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a heterocyclic group; V1 and V2 each represents a monovalent substituent; n1 and n2 each represents 0, 1, 2, 3 or 4; L1, L2 and L3 each represents a methine group; l represents an integer of 0 to 3; M represents a counter ion for balancing electric charge; m represents a necessary number for balancing electric charge; and R1 and R2 each represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group, but at least either R1 or R2 represents the alkyl group represented by any of the following formulae: Ra=(Qa)rCO{overscore (N)}SO2Raa Rb=(Qb)sSO2{overscore (N)}CORbb Rc=(Qc)tCO{overscore (N)}CORcc Rd=(Qd)uSO2{overscore (N)}SO2Rdd Re=(Qe)vX wherein Raa, Rbb, Rcc and Rdd each represents an alkyl group, an aryl group, a heterocyclic group, an alkoxyl group, an aryloxy group, a heterocyclyloxy group, or an amino group; Qa, Qb, Qc, Qd and Qe each represents a divalent linking group; X represents SO3−, CO2−, or PO32−; and r, s, t, u and v each represents an integer of 1 or more, but when X represents SO3−, v represents 1 or 2.
摘要:
The semiconductor device of the present invention includes: particles or interface states for passing charge formed on a p-type silicon substrate via a barrier layer; and particles for holding charge formed above the charge-passing particles via another barrier layer. The charge-holding particles are different from the charge-passing particles in parameters such as the particle diameter, the capacitance, the electron affinity, and the sum of electron affinity and forbidden bandwidth, to attain swift charge injection and release as well as stable charge holding in the charge-holding particles.
摘要:
The invention provides a semiconductor device, having a variety of functions such as a bistable memory and a logic circuit, in which a MOS semiconductor element, a resonance tunnel diode, a hot electron transistor and the like are formed on a common substrate. An n-type Si layer and a p-type Si layer surrounded with an isolation oxide film are formed on an SOI substrate. A mask oxide film and a gate oxide film are formed, and the n-type Si layer is subjected to crystal anisotropic etching by using the mask oxide film as a mask, so as to change the n-type Si layer into the shape of a thin Si plate. After first and second tunnel oxide films are formed on side faces of this n-type Si layer, first and second polysilicon electrodes of a resonance tunnel diode and a polysilicon electrode working as a gate electrode of a MOS semiconductor element are formed out of a common polysilicon film. Thus, a Si/SiO.sub.2 type quantum device can be manufactured with ease at a low cost.