Abstract:
A display device includes a light source generating light and a thin film transistor array panel including a pixel electrode and a common electrode. The display includes an upper panel and a quantum rod layer positioned between the thin film transistor array panel and the upper panel. The display includes an upper polarizer attached outside of the upper panel, in which the quantum rod layer includes quantum rods, and an arrangement direction of the quantum rods is controlled by an electric field generated by the pixel electrode and the common electrode, light is polarized according to the controlled arrangement direction, and the polarizer controls the transmission degree of the polarized light from the quantum rods according to the arrangement direction of the quantum rods.
Abstract:
A liquid crystal display device which may prevent a color mixing phenomenon and a driving method thereof, the liquid crystal display device including a first substrate and a second substrate facing each other; a thin film transistor disposed inside the first substrate; a color conversion layer disposed inside the second substrate and including a plurality of quantum rods; a liquid crystal layer disposed between the first substrate and the second substrate; a first polarizer disposed outside the first substrate; and a second polarizer disposed outside the second substrate.
Abstract:
A 3D image display device includes: a backlight unit including a first color light source and a second color light source, which are alternately turned on; a display panel on a front side of the backlight unit and including a pixel, where the pixel includes a first subpixel including a first color filter and a second subpixel including a second color filter; a patterned circular polarizer on a front side of the display panel, extending substantially in a first direction, and including a first circular polarization part and a second circular polarization part having widths substantially the same as widths of the first subpixel and the second subpixel, respectively; and glasses including a left lens and a right lens, where each of the left lens and the right lens includes a plurality of circular polarization patterns and a shutter glass panel which turns on and off each circular polarization pattern.
Abstract:
A display device includes a pixel in a display area. The pixel includes: spaced apart first and second electrodes; a first insulating layer on the first electrode and the second electrode and between the first electrode and the second electrode and having a first etch selectivity; a first insulating pattern on the first insulating layer between the first electrode and the second electrode, and having a second etch selectivity; a light emitting element on the first insulating pattern; a second insulating pattern having the second etch selectivity and being on one area of the light emitting element such that a first end and the second end of the light emitting element are exposed; and third and fourth electrodes configured to electrically connect the first end and the second end of the light emitting element to the first and second electrodes, respectively.
Abstract:
An apparatus for manufacturing a light emitting display device includes a stage, and at least one electric-field application module disposed on at least one side of the stage. The apparatus further includes at least one of: at least one printing head disposed above the stage, and a heating element disposed adjacent the stage. The at least one electric-field application module includes a probe head having at least one probe pin, and a driver connected to the probe head to move the probe head.
Abstract:
A display device may include a display area including pixel areas each including an emission area, a non-display area, and a pixel disposed in each of the pixel areas. The pixel may include a first electrode, a second electrode spaced apart from the first electrode and surrounding a periphery of the first electrode, a third electrode spaced apart from the second electrode and surrounding a periphery of the second electrode, a fourth electrode spaced apart from the third electrode and surrounding a periphery of the third electrode, light emitting elements disposed between the first to fourth electrodes, and first and second conductive lines disposed under the first to fourth electrodes with an insulating layer disposed therebetween. The first conductive line may be electrically connected to the first electrode, and the second conductive line may be electrically connected to the fourth electrode.
Abstract:
A display deice includes a pair of first color sub-pixels arranged in a display area in a first direction, each of the pair of first color sub-pixels including at least one first color light emitting element, and a bank enclosing the pair of first color sub-pixels. The bank includes at least two areas having different widths in an area corresponding to each of the pair of first color sub-pixels.
Abstract:
A display device comprises a substrate, a first electrode on the substrate and extending in a first direction, a second electrode on the substrate and extending in the first direction, the second electrode being spaced apart from the first electrode in a second direction, a first insulating layer on the first electrode and the second electrode, light-emitting elements on the first insulating layer, the light-emitting elements being disposed on the first electrode and the second electrode, a second insulating layer disposed on the light-emitting elements, a first contact electrode disposed on the first electrode and electrically contacting the light-emitting elements, and a second contact electrode disposed on the second electrode and electrically contacting the light-emitting elements. The second insulating layer comprises patterns that cover at least part of the light-emitting elements and are spaced apart from one another in the first direction.
Abstract:
A light emitting device, includes: a substrate; a light emitting element on the substrate, the light emitting element having a first end portion and a second end portion arranged in a longitudinal direction; one or more partition walls disposed on the substrate, the one or more partition walls being spaced apart from the light emitting element; a first reflection electrode adjacent the first end portion of the light emitting element; a second reflection electrode adjacent the second end portion of the light emitting element; a first contact electrode connected to the first reflection electrode and the first end portion of the light emitting element; an insulating layer on the first contact electrode, the insulating layer having an opening exposing the second end portion of the light emitting element and the second reflection electrode to the outside; and a second contact electrode on the insulating layer.
Abstract:
Provided are a display device and a manufacturing method thereof. The display device comprises: a substrate; a first electrode and a second electrode disposed on the substrate to be spaced apart from each other; a first insulating layer disposed on the substrate so as to cover at least a portion of the first electrode and the second electrode; and at least one first light emitting element disposed between the first electrode and the second electrode, on the first insulating layer. The first insulating layer comprises: a first sub-insulating layer comprising a first portion including a hydrophilic material and a second portion which is a region of the first insulating layer except for the first portion and includes a hydrophobic material; and a second sub-insulating layer disposed below the first sub-insulating layer, and at least a portion of the at least one first light emitting element is disposed on the first portion.