Abstract:
A method and an apparatus for scheduling uplink transmissions according to a maximum transmission power and Power Headrooms (PHs) reported by a User Equipment (UE) are provided. A method for reporting the PHs for carriers used by a terminal in a mobile communication system supporting carrier aggregation includes generating a message including the PHs along with indicators indicating whether a real transmission is scheduled on an uplink data channel of corresponding carrier, and including, when the real transmission is scheduled, a maximum transmission power used for calculating the PHs in the generated message.
Abstract:
A method and apparatus for transmitting channel measurement information in a mobile communication system are disclosed. The method and apparatus enable a user equipment to log channel measurement information and transmit the same to a base station so as to enhance radio network performance and reduce processing complexity of the user equipment by removing unnecessary operations of the user equipment and preventing waste of radio network capacity during transmission of channel measurement information.
Abstract:
A device and method for handling HARQ feedback in a mobile communication system are disclosed. The HARQ feedback handling method includes: analyzing a control message from a base station to recognize presence of HARQ feedback relationships between downlink carriers and uplink carriers; determining an uplink carrier (a downlink carrier) to support HARQ feedback in response to downlink traffic (uplink traffic) sent through a downlink carrier (an uplink carrier); and sending (receiving) HARQ feedback through the determined uplink carrier (downlink carrier).
Abstract:
The method for transmitting and receiving data at a base station in a wireless communication system according to one embodiment of the present invention includes the steps of receiving a performance report from a terminal, determining whether the addition of a serving cell is necessary, when the addition of the serving cell is necessary, transmitting a request for receiving a cell identifying signal to one or more other base stations on the basis of the received performance repoπand transmitting a request for transmitting the cell identifying signal to the terminal. According to the embodiment, in a network in which a small cell and a macro cell are overlapped and operated, the terminal can minimize battery consumption and quickly recognize the small cell.
Abstract:
A power headroom calculation method and apparatus of a User Equipment (UE) are provided for a primary cell Power Headroom (PH) calculation in a Long Term Evolution-Advanced (LTE-A) mobile communication system. The method includes determining whether an activated serving cell includes uplink data and/or uplink control signal to be transmitted, and determining PH of the activated serving cell according to whether the activated serving cell has the uplink data and/or uplink control signal.
Abstract:
A method and apparatus are provided for receiving a Scheduling Assignment (SA) by a User Equipment (UE) in a communication system in which a base station transmits the SA including at least one Information Element (IE). The method includes receiving the SA; identifying if a first IE included in the received SA is set with a first predetermined value and at least one bit in a second IE included in the received SA is set with a second predetermined value; and performing an action corresponding to a semi-persistent scheduling, if the first IE included in the received SA is set with the first predetermined value and the at least one bit in the second IE included in the received SA is set with the second predetermined value.
Abstract:
The present invention proposes a method for activating secondary carriers in addition to the primary carrier in a wireless communication system supporting carrier aggregation technology. Through the present invention, the UE sorts the operations for activating an SCell into two groups that are executed at different timings, thereby facilitating communication without malfunctioning.
Abstract:
The present invention relates to a method for managing cell informations received from neighbor cells for MDT (Minimization of Drive Test) in the 3GPP system and terminal for performing the method, the terminal including a transceiver which receives cell informations transmitted by at least one neighbor base station; a controller which checks at least one cell information for generating location prediction information to check current location of the terminal among the cell informations received by the transceiver; and a memory which stores the at least one cell information for generating the location prediction information as Minimization of Drive Test (MDT) measurement sample for reporting radio environment under the control of the controller. The terminal is capable of logging the neighbor cell measurement information efficiently depending on whether the terminal logs RF fingerprint information in the idle mode.
Abstract:
A method and terminal in a wireless communication system are provided. The method includes receiving system information including information associated with a sub-frame configuration of multimedia broadcast multicast service single frequency network (MBSFN) sub-frame, receiving dedicated message including information on configuration of a transmission mode of the terminal, if the terminal is configured in a first transmission mode, detecting a physical downlink control channel (PDCCH) in a sub-frame of the MBSFN sub-frame and decoding a physical downlink shared channel (PDSCH) in the sub-frame of the MBSFN sub-frame, and if the terminal is configured in a second transmission mode, detecting a PDCCH in a sub-frame of a non-MBSFN sub-frame and decoding a PDSCH in the sub-frame of the non-MBSFN sub-frame.
Abstract:
A method and an apparatus for efficiently transmitting or reporting a Power Headroom Report (PHR) of a User Equipment (UE) are provided. The method of transmitting the PHR of the UE in a mobile communication system includes configuring an extended PHR including an indicator corresponding to a variation factor of a maximum transmission power of the UE, and transmitting the extended PHR from the UE to a Base Station (BS). The BS may be notified of a maximum transmission power of the UE and a variation factor corresponding to the maximum transmission power in order to enable efficient scheduling.