摘要:
Resistance elements are inserted into a main power supply line and a main ground line so that offset differential amplifiers receive voltages developed across the same. The differential amplifiers control transistors connected to a sub power supply line and a sub ground line. Thus, a leakage current flowing from the sub power supply line to the main ground line and that flowing from the main power supply line to the sub ground line are regularly kept constant. Consequently, it is possible to prevent an operation delay in an initial stage of a standby state while keeping an effect of reducing a subthreshold leakage current in a semiconductor circuit device having a hierarchical power supply structure.
摘要:
Resistance elements are inserted into a main power supply line and a main ground line so that offset differential amplifiers receive voltages developed across the same. The differential amplifiers control transistors connected to a sub power supply line and a sub ground line. Thus, a leakage current flowing from the sub power supply line to the main ground line and that flowing from the main power supply line to the sub ground line are regularly kept constant. Consequently, it is possible to prevent an operation delay in an initial stage of a standby state while keeping an effect of reducing a subthreshold leakage current in a semiconductor circuit device having a hierarchical power supply structure.
摘要:
The level converting circuit includes a first current cutting circuit, a second current cutting circuit, a level shift circuit and an inverter. The first current cutting circuit includes two PMOS transistors connected to a node having a boosted potential Vpp. The second current cutting circuit includes two NMOS transistor connected to a ground node. The level shift circuits include two PMOS transistors and two NMOS transistors. Before a through current flows between the node having the boosted potential Vpp and the ground node, any of the transistor included in the first current cutting circuit and any of the transistors included in the second current cutting circuits are turned off. Therefore, through current between the node having the boosted potential Vbb and the ground node can be prevented.
摘要:
A semiconductor memory device includes a mode detection circuit for generating a mode detection signal in response to external input signals /RAS, /CAS and /WE, an internal potential generating circuit for generating and supplying to an output node an internal potential, in response to an activated potential control signal, and an internal potential control circuit for activating a potential control signal when a potential at the output node has not yet reached a predetermined potential in a case where mode detection signal indicates a mode other than the test mode, and for activating the potential control signal when the potential at the output node has not yet reached an externally supplied external reference potential in a case where the mode detection signal indicates the test mode. When external input signals are applied at a predetermined timing, a mode detection signal indicating the test mode is generated, and when the potential at the output node of the internal potential generating circuit has not yet reached the external reference potential, an internal potential is generated and supplied to the output node. Therefore, the internal potential can be controlled in accordance with the external reference potential.
摘要:
Read drivers which are provided in correspondence to simultaneously selected plural bits of memory cells are wired-OR connected to internal read data buses which in turn are provided in correspondence to a plurality of memory cell arrays respectively. A test mode circuit is provided for the internal read data buses for detecting coincidence/incoincidence of logics of signal potentials on these internal read data bus lines. In a test operation, all read drivers are activated to read selected memory cell data on the corresponding internal read data bus lines.
摘要:
A synchronous semiconductor memory device operates an input/output buffer circuit in synchronization with an external clock signal in a single data rate SDRAM operation mode. In a double data rate SDRAM operation mode, an internal clock signal of a frequency two times that of the external clock signal is generated. The input/output buffer circuit is operated in synchronization with the internal clock signal.
摘要:
When an operation of an internal circuit is initiated, a current is supplied from an external power supply node to a sub-power source line for a predetermined period. A semiconductor device having a hierarchical power source structure is provided, which can have a voltage variation in the sub-power source line reduced and which can recover the varied voltage speedily to a predetermined voltage level in an operating state of the internal circuit.
摘要:
A synchronous semiconductor memory device operates an input/output buffer circuit in synchronization with an external clock signal in a single data rate SDRAM operation mode. In a double data rate SDRAM operation mode, an internal clock signal of a frequency two times that of the external dock signal is generated. The input/output buffer circuit is operated in synchronization with the internal dock signal.
摘要:
A synchronous semiconductor memory device operates an input/output buffer circuit in synchronization with an external clock signal in a single data rate SDRAM operation mode. In a double data rate SDRAM operation mode, an internal clock signal of a frequency two times that of the external clock signal is generated. The input/output buffer circuit is operated in synchronization with the internal clock signal.
摘要:
A semiconductor integrated circuit device has a hierarchical power supply system for a logic circuit. Inverters are provided with power supply from a main power supply line and a sub-power supply line of a higher potential and a main ground line and a sub-ground line of a lower potential. An internal power supply voltage-down converter is placed to set the voltage of the main power supply line higher than a normal operation voltage of the higher potential. An internal supply voltage boosting circuit is placed to set the voltage of the main ground line lower than a normal operation voltage of the lower potential. When respective power supply lines are short-circuited by a switching transistor, the voltage of each power supply line can be maintained at an operation supply voltage.