摘要:
A control algorithm or method for use in controlling a voltage-fed induction machine. The control algorithm includes the following steps. The DC link voltage supplied to an inverter driving the induction machine is monitored. When the DC link voltage is high enough, the algorithm controls the amount of current supplied to the induction machine to provide current controlled operation of the induction machine. When the DC link voltage is not high enough to control the current under transient conditions, the induction machine is controlled by imposing the maximum possible phase voltage and optimal slip angle on the machine to provide maximal torque per ampere operation of the induction machine. The maximal torque per ampere operation is performed when either of the following conditions is met: a) the torque level required by the induction machine is such that efficiency optimization cannot be performed, or b) current regulators approach saturation. The current controlled operation is performed when a) the torque level required by the induction machine is at a level that allows efficiency optimization, and b) the current regulators are not near saturation. The efficiency optimization in the current controlled mode is performed by using a single constant over the whole operating range.
摘要:
Embodiments of the present disclosure relate to methods, systems and apparatus for adjusting current and/or torque commands used to control operation of an asynchronous machine based on rotor flux of the asynchronous machine.
摘要:
Methods, systems and apparatus are provided for estimating electrical angular speed of a permanent magnet machine based on two-phase stationary reference frame feedback stator current samples, and a dimensionless gain (K) that is computed based on a sampling time (T) and machine parameters.
摘要:
Systems and methods are disclosed for a dual voltage-source inverter system. The systems and methods selectively couple a first voltage source and a second voltage source to an inverter via a controllable switch.
摘要:
Systems and methods are disclosed to provide torque linearity in the field-weakening region for an electric (e.g., IPM) machine. The systems and methods implement a field weakening and a torque linearity control loop for linearizing torque generated by an electric machine. As a result, torque linearity is maintained when the electric machine operates in the field weakening region.
摘要:
An inverter circuit couples a DC voltage source having a primary side and a reference side to an electric motor or other AC machine having multiple electrical phases. An inverter circuit includes switches, diodes and a controller. For each of the electrical phases, a first switch couples the electrical phase to the primary side of the DC voltage source and a second switch couples the electrical phase with the reference side of the DC voltage source. For each of the first and second switches, an associated anti-parallel diode is configured to provide an electrical path when the switch associated with the diode is inactive. The controller is coupled to the switching inputs of each of the first and second switches and is configured to provide a control signal thereto, wherein the control signal provided to each switch comprises, in a low frequency mode, a first portion and a second portion, wherein the first portion comprises a first pulse width modulation scheme and the second portion comprises a second pulse width modulation scheme different from the first modulation scheme.
摘要:
According to an example embodiment, a method is provided for limiting an operational temperature of a motor. The method includes generating a maximum allowable current I*S(max) for a motor based on a temperature difference between a temperature reference T* of a power inverter module and a semiconductor device temperature T of the power inverter module. The method further includes generating a maximum allowable torque T*e(max) based on the maximum allowable current I*S(max) and a maximum allowable flux Ψ*S(max), and using the maximum allowable torque T*e(max) to limit the torque command T*e in order to suppress the semiconductor device temperature T to below the temperature reference T*.
摘要:
A method of using a cycloconverter switches a first switch of the first topology type to an on state after a magnitude of a current through an output inductor becomes less than a predetermined current threshold, and switches a second switch of the first topology type to an off state a first time after switching the first switch to the on state. The cycloconverter includes nodes on a first port, nodes on a second port, a switch pair coupled between a first node of the first port and a first node of the second port, a switch pair coupled between a second node of the first port and a first node of the second port, a switch pair coupled between a first node of the first port and a second node of the second port, and a switch pair coupled between a second node of the first port and a second node of the second port. Each switch pair includes a switch of each topology type.
摘要:
Methods and apparatus are provided for an electric vehicle embodying an axial flux traction motor directly coupled to a wheel thereof. The traction motor comprises a stator having coils for producing a magnetic field, an annular rotor magnetically coupled to the stator and mechanically to an output shaft. Permanent magnets of alternating polarity are mounted on the annular rotor. Magnetic shunts bridge a portion of the stator slots above the coils. The magnets are arranged in groups with group-to-group spacing exceeding magnet-to-magnet spacing. Adjacent edges of the magnets diverge. The method comprises, looking up d- and q-axis currents to provide the requested torque and motor speed for the available DC voltage, combining at least one of the d- and q-axis currents with a field weakening correction term, converting the result from synchronous to stationary frame and operating an inverter therewith to provide current to the coils of the motor.
摘要:
A method for decoupling a harmonic signal from an input signal wherein the harmonic signal is harmonic relative to a signal other than the input signal. An angular position of the other signal is multiplied by a value representing the harmonic to obtain an angular position multiple. A harmonic decoupling block uses the angular position multiple to obtain correction signals representing the harmonic signal, and subtracts the correction signals from the input current to decouple the harmonic signal from the input signal. This method is useful for decoupling unwanted harmonics from currents into which high-frequency signals have been injected for control of electric motors.