Abstract:
There are provided a control device, a control method, a control unit, and an engine control unit, which are capable of controlling a controlled object with relatively large phase delay and dead time, while attaining elimination of lag in control timing between the input and output of the controlled object and improvement of control accuracy at the same time. A state predictor calculates a deviation (output deviation) between an output from an oxygen concentration sensor and a predetermined target value at a predetermined deviation calculation period. Then, a DSM controller calculates a target air-fuel ratio for converging the output from the oxygen concentration sensor to the predetermined target value, according to the calculated deviation, based on any one of a Δ modulation algorithm, a ΔΣ modulation algorithm, and a ΣΔ modulation algorithm at a predetermined calculation period shorter than the predetermined deviation calculation period.
Abstract:
A controller which is capable of improving the resolution and accuracy of control even when controlling a plant including a control region in which nonlinearities are temporarily very strongly exhibited and a control region in which the nonlinearities are hardly exhibited. A controller 1 which controls fuel pressure Pf of a fuel supply system 10 includes an ECU 2. The ECU 2 sets a target fuel pressure Pf_cmd, calculates a first control input Rsld for causing the fuel pressure Pf to converge to the target fuel pressure Pf-cmd, with equations (1) to (6), modulates the first control input Rsld with equations (11) to (31) to thereby calculate a second control input Udsm, and depending on whether or not during fuel-cut operation or pressure decreasing control, selects one of the first and second control inputs Rsld and Udsm as the control input Upf.
Abstract:
There are provided an artificial joint device that can realize an artificial limb enabling twisting motion without a drive source, and when with the drive source, reduce the size and costs of the device, and a parallel linkage that can realize the device. The linkage connects a foot portion and a mounting plate spaced from each other. A fixed link has one end fixed to the plate, and the other end connected to the foot portion via a ball joint, making the angle of the fixed link relative to the foot portion changeable in any direction. Expansible links extend between the foot portion and the plate in an expansible/contractible manner and each have opposite ends connected to the plate and the foot portion via respective upper and lower ball joints, making respective angles thereof relative to the foot portion and the plate changeable in any direction.
Abstract:
A control for avoiding interference between a valve and a piston of an engine is provided. The engine has a variable lift mechanism that is capable of changing a lift amount of the valve and a variable phase mechanism that is capable of changing a phase of the valve. A predicted value of the phase is calculated. A first determination of whether or not the predicted value has exceeded a first predetermined value is made. If it is determined that the predicted value has exceeded the first predetermined value, at least one of the lift amount and the phase is changed to avoid the interference between the valve and the piston. By using the predicted value, the interference can be avoided without delay.
Abstract:
A controller for a contact mechanism for preventing a lack of a pressing force applied from a contacting member to a contacted member when determining a control input to an actuator moving the contacting member by means of a position control. The controller comprises: a sliding mode controller 53 for determining a control input Vsc to a shift motor so as to increase an output of the shift motor along with an increase in a difference between a target position Psc_cmd and an actual position Psc of a coupling sleeve to eliminate the difference; an offset value determination section 55 for determining an offset value Ufb for a target position of the coupling sleeve set by a target position scheduler so that the control input Vsc to the shift motor matches a target control input preset so that the pressing force applied from the coupling sleeve to a synchronizer ring is at a predetermined level when detecting a contact between the coupling sleeve and the synchronizer ring; and an adder 56 for adding the offset value Ufb to the target position.
Abstract:
An apparatus for detecting a failure of an exhaust gas sensor disposed in an exhaust manifold is provided. The apparatus comprises a control unit. The control unit compares detection values of the exhaust gas sensor detected under different element temperatures of the exhaust gas sensor. The control unit detects a failure of the exhaust gas sensor based on the comparison result. In one embodiment, the different states include a state in which the element temperature is maintained at higher level and a state in which the element temperature is maintained at lower level. The element temperature can be controlled by a response assignment control scheme. In one embodiment, the detection values are subjected to a filtering process and/or a statistical process using a successive least squares method. The control unit compares the statistically processed detection values to detect a failure of the exhaust gas sensor.
Abstract:
A control apparatus, a control method, and an engine control unit are provided for controlling an output of a controlled object which has a relatively large response delay and/or dead time to rapidly and accurately converge to a target value. When the output of the controlled object is chosen to be that of an air/fuel ratio sensor in an internal combustion engine, the output of the air/fuel ratio sensor can be controlled to rapidly and accurately converge to a target value even in an extremely light load operation mode.
Abstract:
A control apparatus for an exhaust gas recirculation valve is disclosed. The exhaust gas recirculation valve is provided in an exhaust gas recirculation pipe for recirculating exhaust gases from an internal combustion engine to an intake system of the engine. The exhaust gas recirculation valve controls an exhaust gas recirculation amount. An opening of the exhaust gas recirculation valve is controlled to a target opening, based on a controlled object model which is obtained by modeling the exhaust gas recirculation valve.
Abstract:
An apparatus for controlling the air-fuel ratio of an internal combustion engine to compensate for the effect of the dead times of an exhaust system including a catalytic converter, etc. and to increase the purifying capability of the catalytic converter. An exhaust-side control unit 7a sequentially variably sets a dead time of an exhaust system E depending on the flow rate of an exhaust gas supplied to a catalytic converter 3 and a dead time of an air-fuel ratio manipulating system comprising an internal combustion engine 1 and an engine-side control unit 7b, and sequentially estimates an output of an O2 sensor 6 after a total set dead time which is the sum of the above set dead times. The exhaust-side control unit 7a sequentially generates a target air-fuel ratio KCMD to converge the output of the O2 sensor 6 to a target value using the estimated value, and manipulates the air-fuel ratio of the internal combustion engine 1. Using the set dead time of the exhaust system E as a dead time of an exhaust system model which serves as a basis for estimating the output of the O2 sensor 6, a parameter of the exhaust system model is sequentially identified.
Abstract:
An actuator control system restrains hindrance to an object under control by an interfering substance that exists on its traveling path when the object is moved toward a target position on one axis while the object has been positioned at a target position on the other axis. A selection controller sets a switching function setting parameter (VPOLE_sl) so that a disturbance suppressing capability level is lower at a set value (VPOLE_sl_l) at time (t31˜) when a shift arm is moved in a shifting direction by a shift controller than at a set value (VPOLE_sl_h) at time (˜t31) when the shift arm is moved in a selecting direction to be set at a certain gearshift position (|VPOLE_sl_h|