Abstract:
Techniques for determining certain parameters of semiconductor specimens using X-ray spectroscopy are described. The invention can be used to determine parameters such as composition, dimensions, and density of semiconductor specimens. Specifically, an X-ray spectrum simulation algorithm is used to iteratively generate a theoretical X-ray spectrum for a semiconductor specimen having certain parameters. The iterative generation of theoretical X-ray spectrums continues until one of the theoretical X-ray spectrum closely matches the actual X-ray spectrum measured off of the specimen. In an alternative embodiment, this technique of generating theoretical X-ray spectrums can be used in combination with a pre-existing library of X-ray spectral signatures for semiconductor specimens having various parameters.
Abstract:
A process which addresses the problem of transient defects comprises first processing one or more test chips on a substrate to reveal one or more potential transient defects during subsequent processing of all of the chips on the substrate; identifying the exact locations of such potential transient defects on one or more chips of a silicon substrate; forming a file containing the coordinates of each potential transient defect on the chip; converting the file into a CAD image layer capable of displaying such potential transient defects; and displaying such potential transient defects superimposed over a CAD image of the actual circuit to permit visual inspection of the compound CAD image and to permit optional action to be taken in view of such potential transient defects. In another embodiment of the invention, the file containing the locations of the potential transient defects is transmitted to a metrology apparatus such as a critical dimension (CD) scanning electron microscope (SEM) which monitors the potential transient defect addresses during processing of the chip. The two embodiments of the invention may be practiced in the alternative or in combination with one another.
Abstract:
A system and method for performing a magnetic imaging, optical profiling, and measuring lubricant thickness and degradation, carbon wear, carbon thickness, and surface roughness of thin film magnetic disks and silicon wafers at angles that are not substantially Brewster's angle of the thin film (carbon) protective overcoat is provided. The system and method involve a focused optical light whose polarization can be switched between P or S polarization is incident at an angle to the surface of the thin film magnetic disk. This generates both reflected and scattered light that may be measured to determine various values and properties related to the surface of the disk, including identifying the Kerr-effect in reflected light for determination of point magnetic properties. In addition, the present invention can mark the position of an identified defect.
Abstract:
Methods and apparatus for efficiently analyzing defects in-line on a wafer by wafer basis are provided. In general terms, embodiments of the present invention provide a simple interface for setting up the entire inspection and defect analysis process in a single set up procedure. The apparatus includes an inspection station for inspecting a specimen for potential defects and a review station for analyzing a sample of the potential defects to determine a classification of such potential defects. The apparatus further includes a computer system having an application interface operable to allow a user to set up the inspection station and the review station during a same setup phase so as to allow the inspection station and the review station to then operate automatically to provide defect information for one or more specimens based on the user set up.
Abstract:
Methods and apparatus are providing for inspecting a test sample. An electron beam is tuned to cause secondary electron emissions upon scanning a target area. Reactive substances are introduced to etch and remove materials and impurities from the scan target. Residual components are evacuated. In one example, a laser is used to irradiate and area to assist in the removal of residual components with poor vapor pressure.
Abstract:
One embodiment disclosed is a method of detecting defects in objects. A selected surface area of an object is inspected with a multi-pixel electron microscope, and first set of data is generated having signal values representing image content of each pixel thereof. Further selected surface area of the object is inspected with said multi-pixel electron microscope, and second set of data is generated having signal values representing image content of each pixel thereof. Corresponding portions of first and second sets of data are stored in memory. Misalignment between stored portions of the first and second sets of data is detected with resolution of a fraction of a pixel, and the stored portions of first and second sets of data are aligned using subpixel interpolation to correct the detected misalignment therebetween. Finally, corresponding subportions of the aligned portions of first and second sets of data are compared to detect differences therebetween.
Abstract:
Disclosed in an optical inspection system for inspecting the surface of a substrate. The optical inspection system includes a light source for emitting an incident light beam along an optical axis and a first set of optical elements arranged for separating the incident light beam into a plurality of light beams, directing the plurality of light beams to intersect with the surface of the substrate, and focusing the plurality of light beams to a plurality of scanning spots on the surface of the substrate. The inspection system further includes a light detector arrangement including individual light detectors that correspond to individual ones of a plurality of reflected or transmitted light beams caused by the intersection of the plurality of light beams with the surface of the substrate. The light detectors are arranged for sensing the light intensity of either the reflected or transmitted light.
Abstract:
Techniques for utilizing a microscope inspection system capable of inspecting specimens at high throughput rates are described. The inspection system achieves the higher throughput rates by utilizing more than one detector array and a large field of view to scan the surface of the semiconductor wafers. The microscope inspection system also has high magnification capabilities, a high numerical aperture, and a large field of view. By using more than one detector array, more surface area of a wafer can be inspected during each scanning swath across the semiconductor wafers. The microscope inspection system is configured to have a larger field of view so that the multiple detector arrays can be properly utilized. Additionally, special arrangements of reflective and/or refractive surfaces are used in order to fit the detector arrays within the physical constraints of the inspection system.
Abstract:
Disclosed is test structure that can be fabricated with minimal photolithography masking steps and in which defects may be localized to specific layers. Mechanisms for fabricating such test structures are also provided. In one embodiment, a semiconductor test structure suitable for a voltage contrast inspection is provided. The test structure includes one or more test layers corresponding to one or more product layers selected from a plurality of product layers of an integrated circuit (IC) product structure. The number of the selected one or more test layers is less than a total number of the plurality of product layers of the product structure, and the test layers include at least a first portion that is designed to have a first potential during the voltage contrast inspection and a second portion that is designed to have a second potential during the voltage contrast inspection. The first potential differs from the second potential. The selected one or more test layers which correspond to product layers are selected from the plurality of product layers such that defects found in the test layers of the test structure during the voltage contrast inspection represent a prediction of defects in the corresponding product structure.
Abstract:
Disclosed is a method of determining an overlay error between two layers of a multiple layer sample. For a plurality of periodic targets that each have a first structure formed from a first layer and a second structure formed from a second layer of the sample, an optical system is employed to thereby measure an optical signal from each of the periodic targets. There are predefined offsets between the first and second structures. An overlay error is determined between the first and second structures by analyzing the measured optical signals from the periodic targets using a scatterometry overlay technique based on the predefined offsets. The optical system comprises any one or more of the following apparatus: an imaging reflectometer, an imaging spectroscopic reflectometer, a polarized spectroscopic imaging reflectometer, a scanning reflectometer system, a system with two or more reflectometers capable of parallel data acquisition, a system with two or more spectroscopic reflectometers capable of parallel data acquisition, a system with two or more polarized spectroscopic reflectometers capable of parallel data acquisition, a system with two or more polarized spectroscopic reflectometers capable of serial data acquisition without moving the wafer stage or moving any optical elements or the reflectometer stage, imaging spectrometers, imaging system with wavelength filter, imaging system with long-pass wavelength filter, imaging system with short-pass wavelength filter, imaging system without wavelength filter, interferometric imaging system, imaging ellipsometer, a spectroscopic ellipsometer, a laser ellipsometer having a photoelastic modulator, an imaging spectroscopic ellipsometer, a scanning ellipsometer system, a system with two or more ellipsometers capable of parallel data acquisition, a system with two or more ellipsometers capable of serial data acquisition without moving the wafer stage or moving any optical elements or the ellipsometer stage, a Michelson interferometer, and a Mach-Zehnder interferometer, a Sagnac interferometer, a scanning angle of incidence system, a scanning azimuth angle system, a null first order differential reflectometer, a null first order differential polarized reflectometer.