Abstract:
Marking devices for dispensing a marking substance on the ground and marking methods are provided. The marking devices and marking methods use one or more detection mechanisms to detect one or more characteristics of the marking substance. In some embodiments, the detection mechanism may be, but is not limited to, an optical sensor, an olfactory sensor, a weight sensor, a switch device, and any combination thereof. The one or more detection mechanisms may provide, for example, the capability to: (1) determine the type of marking substance that is installed in the marking device; (2) determine in advance of or during a marking operation the amount of marking substance within the marking dispenser; and (3) determine when the marking dispenser is becoming empty.
Abstract:
A wet processing apparatus for wet-processing substrates can suppress the reduction of throughput when some component part thereof becomes unserviceable. The wet processing apparatus includes a first nozzle unit and a second nozzle unit. When the wet processing apparatus operates in a normal mode, a substrate carrying mechanism is controlled so as to deliver substrates alternately to processing units of a first group and those of a second group so that the substrates are processed sequentially in order. When the processing units of the first group (the second group) are unserviceable due to the inoperativeness of the substrate holders, a processing liquid supply system or a nozzle support mechanism, the nozzle unit for the processing units of the second group (the first group) is moved to process substrates by the serviceable ones of the first group (the second group).
Abstract:
A sheet of paper is set on a paper-supplying portion of a top surface gloss processing apparatus while its top surface is faced upward. A gloss level sensor measures gloss level of the top surface of the sheet of paper. Data of this measurement is compared with a previously set threshold value. Based on this comparison, it is determined whether or not the gloss processing has been performed on the top surface thereof. When determining that the gloss processing has been already performed, a warning message such that the gloss processing has been already performed on the top surface of the sheet, of paper is displayed on a screen. On the other hand, when determining that the gloss processing has not performed, the top surface gloss processing apparatus performs the gloss processing on the top surface thereof.
Abstract:
A mask frame assembly for thin film deposition including a frame having an opening portion and a support portion, and a mask having a deposition area in a position corresponding to the opening portion, wherein the mask includes a first layer including the deposition area and a peripheral portion disposed outside the deposition area and a second layer including a first surface and a second surface opposite to the first surface, at least a part of the first surface of the second layer faces the first layer and contacts the peripheral portion, and the second surface is welded to the support portion of the frame.
Abstract:
In a hearth liner wherein an evaporation material is adhered to a substrate to form an optical thin film thereon, the present invention is directed to prevent bumping (splashing) when the evaporation material is irradiated by an electron beam from an electron gun to melt and vaporize thereof. A hearth liner of a vacuum evaporation apparatus wherein the electron beam from the electron gun is irradiated on the evaporation material to form an optical thin film on a substrate, wherein the cross-section shape of an evaporation material storage part of the hearth liner is a shallow semicircular (spherical) shape (bowl shape).
Abstract:
The present disclosure describes a method and apparatus for detecting particles in a gas by saturating the gas with vapor and causing the gas to flow through a chamber with walls that are at a temperature different than the temperature of the entering gas creating a gas turbulence within the chamber resulting in the gas becoming super-saturated with vapor and causing said super-saturated vapor to condense on said particles and form droplets, which are then detected and counted by an optical light-scattering detector.
Abstract:
The present invention relates to tools and methods for disposing, coating, repairing, or otherwise modifying the surface of a metal substrate using frictional heating and compressive/shear loading of a consumable metal against the substrate. Embodiments of the invention include friction-based fabrication tooling comprising a non-consumable member with a throat and a consumable member disposed in the throat, wherein consumable filler material is capable of being introduced to the throat in a continuous manner during deposition using frictional heating and compressive/shear loading of the filler material onto the substrate. Preferred embodiments according to the invention include such tools operably configured for applying a force or displacement to the filler material during deposition. Especially preferred embodiments can include using various powder-type consumable materials or combinations during the deposition process to obtain a continuous compositional gradient in the filler material yielding a functionally graded coating on the substrate.
Abstract:
An inventive substrate treatment method includes a silylation step of supplying a silylation agent to a substrate, and an etching step of supplying an etching agent to the substrate after the silylation step. The method may further include a repeating step of repeating a sequence cycle including the silylation step and the etching step a plurality of times. The cycle may further include a rinsing step of supplying a rinse liquid to the substrate after the etching step. The cycle may further include a UV irradiation step of irradiating the substrate with ultraviolet radiation after the etching step. The method may further include a pre-silylation or post-silylation UV irradiation step of irradiating the substrate with the ultraviolet radiation before or after the silylation step.
Abstract:
A method of producing a stent-balloon assembly is disclosed which includes providing a stent having a polymeric component; exposing the stent to a relative humidity of 20% to 100%; and crimping the stent on a balloon of a catheter assembly. The polymeric component could be at least part of the material from which the stent is made or could be a constituent of a coating for the stent, such as a drug delivery coating. In lieu of or in addition to the application of humidity, a plasticizing agent can be applied to the polymeric component. A crimping device is also disclosed which allows the stent to be exposed to humidity during the crimping process.
Abstract:
A mask assembly capable of improving organic material deposition efficiency is disclosed. The mask assembly comprises: a plurality of deposition masks; a frame coupled to the plurality of deposition masks arranged continuously; and a bonding portion for joining adjacent deposition masks.