Abstract:
A safety device has a lower portion and an upper portion. The lower portion defines a cavity for receiving a seat belt buckle assembly and has at least one rear wall portion extending between opposing sidewalls that partially define the cavity. The rear wall portion forms a slot area to permit a strap attached to the seat belt buckle assembly to extend from the cavity when the seat belt buckle assembly is positioned in the cavity. The rear wall portion is configured to prevent the seat belt buckle assembly from moving laterally out of the cavity. The upper portion is hingedly coupled to the lower portion such that the upper portion completely covers the cavity of the lower portion when the upper portion is rotated into engagement with the lower portion.
Abstract:
A pressure control system for an aircraft seat includes a base plate and a plurality of cells attached to the base plate, each cell having a bellows and a top inflatable diaphragm and defines a pressure chamber therein. Charging apertures are formed in the base plate such that each cell has an associated charging aperture such that each charging aperture is in fluid communication with a pressure chamber. Discharging apertures are formed in the base plate such that each cell has an associated discharging aperture such that each discharging apertures is in fluid communication a pressure chamber. A charging valve and a discharging valve is in fluid communication with the pressure chambers and configured to supply or extract air to or from the chambers through the apertures. A pump is configured to supply pressurized air to the at least one charging valve.
Abstract:
The present invention relates to a gas generator, comprising a comprising a tubular element (10) with high low-temperature toughness. The gas generator is characterized in that the tubular element (10) has a ductile fracture behavior at temperature to at least −196° C., the tubular element (10) has a minimal tensile strength of 650 MPa, the tubular element (10) has a cubic face-centered austenitic structure with at least 90 area percentage and the tubular element (10) consists of a steel alloy which has a manganese content of at least 14.0 wt %
Abstract:
A safety device for preventing accidental discharge of an airbag. A lower portion of the safety device includes two opposing sidewalls at least partially defining a cavity for holding a seat belt buckle assembly. An upper portion of the safety devices is hingedly coupled to the lower portion. The safety device also includes a mechanism for securely latching the upper portion to the lower portion and a mechanism for releasing the upper portion from the lower portion when the upper portion is securely latched to the lower portion to allow the upper portion to rotate away from the lower portion.
Abstract:
A system and method for resisting an uncontrolled descent or uncontrolled flight condition of an aerial vehicle. The system includes a control system, sensors, an inflation device, and a deployable, inflatable assembly. The control system detects an uncontrolled condition using the sensors, and subsequently initiates the inflation device to inflate the inflatable assembly. The assembly includes an inflatable cage stored on and deployed from the aerial vehicle upon detection of an uncontrolled condition. The inflatable cage includes a hub, a perimeter tube, and support tubes connected between the hub and perimeter tube. Fill tubes enable inflation of the support and perimeter tubes. The assembly includes a parachute-material enclosure connected to the inflatable cage and structured to create drag to reduce a velocity of the aerial vehicle when the inflatable assembly is deployed. The assembly includes weight distribution straps physically coupled between the vehicle and the enclosure or inflatable cage.
Abstract:
Active airbag vent systems and associated systems and methods are described herein. An airbag system having an active vent configured in accordance with an embodiment of the present technology can include, for example, a first inflator operably coupled to a first hose for inflating an airbag in response to a rapid deceleration event. The airbag system can further include a second inflator operably coupled to a second hose configured to release a vent or seam on the airbag to rapidly deflate the airbag after initial deployment of the airbag.
Abstract:
An airbag system assembly configured to be positioned in the interior of a vehicle that includes an aft wall configured to be positioned forward of a passenger seat and an airbag system. The aft wall includes front and aft surfaces and the aft wall includes a first flap that is formed by a plurality of weakness lines in at least the front surface thereof. The airbag system includes at least a first airbag module having a first airbag support plate with front and aft surfaces. The first airbag support plate is secured to the front surface of the aft wall, and the first airbag support plate includes a first airbag that is configured to deploy in the event of a crash condition and that is disposed on the aft surface of the first airbag support plate. The first airbag is positioned adjacent the first flap.
Abstract:
The present invention discloses embodiments of an apparatus, systems and related methods for side-facing occupant protection in an aircraft during an abrupt stop—such as in a forward-facing crash event. Embodiments of the present invention disclose a three point air belt that provide superior passenger comfort and retractability, due to inventive construction, by providing enhanced flexibility of the three-point air belt, and more specifically, the shoulder harness portion. The present invention first includes a new airbag material which contributes to the enhanced flexibility, namely, a polyester textile structure treated with a phosphate-phosphonate compound. In further embodiments the material is the coated in a polyurethane mixture. The present invention also includes a new method of compacting the airbag such that it may be disposed in a shoulder harness while remaining substantially unobtrusive and comfortable to a passenger. The invention also includes a new containment material, namely a tubular webbing, to further enhance the flexibility of the shoulder harness over the prior art which generally comprises leather or leather-approximations. The result of the invention also provides enhanced retractability over the prior art, such that the three-point harness may be more easily stowed relative to the prior art.
Abstract:
A crash attenuation system has an airbag inflatable generally adjacent to an exterior of the aircraft. The system includes a gas generator in fluid communication with an interior of the airbag. The system also includes a vent system having a vent passage supported by the aircraft, the vent passage being configured to allow gas to escape from within the airbag during an impact to a second set of airbags for flotation. The vent system also includes an actuator door for sealing the vent passage, thereby preventing gas from leaving the airbag. The actuator door is actuated by an actuator, the actuator being in fluid communication with the gas generator through an actuator duct. The system operates such that deployment of gas from the gas generator causes the actuator to inflate, thereby causing the actuator door to seal the vent passage. The gas generator is configured to re-inflate the airbag after the actuator door seals the vent passage.
Abstract:
An impact protection apparatus is provided, comprising a gas container configured to hold a compressed gas and an inflatable member configured to be inflated by the gas and function as an airbag of a movable object, such as an aerial vehicle. A valve controls flow of gas from the container to the inflatable member in response to a signal from a valve controller. The valve and valve controller are powered by an independent power source than one or more other systems of the movable object. A safety mechanism may also be provided that, unless deactivated, prevents inflation of the inflatable member.