Abstract:
The invention relates to a sensor with at least one silicon-based micromechanical structure, which is integrated with a sensor chamber of a foundation wafer, and with at least one covering that covers the foundation wafer in the region of the sensor chamber, and to a method for producing a sensor. It is provided that in the sensor of the invention, the covering (13) comprises a first layer (32) (deposition layer) that is permeable to an etching medium and the reaction products, and a hermetically sealing second layer (34) (sealing layer) located above it, and that in the method of the invention, at least the sensor chamber (28) present in the foundation wafer (11) after the establishment of the structure (26) is filled with an oxide (30), in particular CVD oxide or porous oxide; the sensor chamber (28) is covered by a first layer (32) (deposition layer), in particular of polysilicon, that is transparent to an etching medium and the reaction products or is retroactively made transparent; the oxide (30) in the sensor chamber (28) is removed through the deposition layer (32) with the etching medium; and next, a second layer (34) (sealing layer), in particular of metal or an insulator, is applied to the deposition layer (32) and hermetically seals off the sensor chamber (28).
Abstract:
A method for manufacturing a semiconductor substrate of a first concentration type is described, which comprises at least a buried insulating cavity, comprising the following steps: forming on the semiconductor substrate a plurality of trenches, forming a surface layer on the semiconductor substrate in order to close superficially the plurality of trenches forming in the meantime at least a buried cavity in correspondence with the surface-distal end of the trenches.
Abstract:
A method for manufacturing a semiconductor substrate of a first concentration type is described, which comprises at least a buried insulating cavity, comprising the following steps: forming on the semiconductor substrate a plurality of trenches, forming a surface layer on the semiconductor substrate in order to close superficially the plurality of trenches forming in the meantime at least a buried cavity in correspondence with the surface-distal end of the trenches.
Abstract:
A method of manufacturing a MEMS structure including forming a porous layer having a predetermined thickness on the top surface of a substrate over an area where a cavity is to be formed; forming the cavity by etching the substrate below the porous layer; forming a membrane layer on the top surface to seal the cavity; and forming a structure on the upper side of the membrane layer. After forming a cantilever structure on the membrane layer and etching the membrane layer, a cantilever structure is produced in a floating state over the cavity. Also, at least one inlet hole and outlet hole can be formed in the porous layer and the membrane, thereby providing a sealed fluidic channel.
Abstract:
A method is for producing a semiconductor component, e.g., a multilayer semiconductor element, e.g., a micromechanical component, e.g., a pressure sensor, having a semiconductor substrate, e.g., made of silicon, and a semiconductor component produced according to the method. To reduce the production cost of such a semiconductor component, in a first step a first porous layer is produced in the semiconductor component, and in a second step a hollow or cavity is produced under or from the first porous layer in the semiconductor component, with the hollow or cavity capable of being provided with an external access opening.
Abstract:
A semiconductor component for a semiconductor substrate, in which a first section and a second section are provided, and in which the pore structure of the first section differs from the pore structure of the second section.
Abstract:
A micromechanical component having a substrate made from a substrate material having a first doping type, a micromechanical functional structure provided in the substrate and a cover layer to at least partially cover the micromechanical functional structure. The micromechanical functional structure has zones made from the substrate material having a second doping type, the zones being at least partially surrounded by a cavity, and the cover layer has a porous layer made from the substrate material.
Abstract:
A simple and cost-effective possibility is proposed for producing optically transparent regions (5, 6) in a silicon substrate (1), by the use of which both optically transparent regions of any thickness and optically transparent regions over a cavity in a silicon substrate are able to be implemented. For this purpose, first at least a specified region (5, 6) of the silicon substrate (1) is etched porous. Thereafter, the specified porous region (5, 6) of the silicon substrate (1) is oxidized.
Abstract:
The invention relates to a sensor with at least one silicon-based micromechanical structure, which is integrated with a sensor chamber of a foundation wafer, and with at least one covering that covers the foundation wafer in the region of the sensor chamber, and to a method for producing a sensor. It is provided that in the sensor of the invention, the covering (13) comprises a first layer (32) (deposition layer) that is permeable to an etching medium and the reaction products, and a hermetically sealing second layer (34) (sealing layer) located above it, and that in the method of the invention, at least the sensor chamber (28) present in the foundation wafer (11) after the establishment of the structure (26) is filled with an oxide (30), in particular CVD oxide or porous oxide; the sensor chamber (28) is covered by a first layer (32) (deposition layer), in particular of polysilicon, that is transparent to an etching medium and the reaction products or is retroactively made transparent; the oxide (30) in the sensor chamber (28) is removed through the deposition layer (32) with the etching medium; and next, a second layer (34) (sealing layer), in particular of metal or an insulator, is applied to the deposition layer (32) and hermetically seals off the sensor chamber (28).
Abstract:
A new class of semipermeable membranes, and techniques for their fabrication, have been developed. These membranes, formed by appropriate etching of a deposited silicon nitride layer, are robust, easily manufacturable, and compatible with a wide range of silicon micromachining techniques.