Abstract:
A mini personal computer (PC) is described. The mini PC includes a housing, at least one heat-generating structure coupled with the housing, and a cooling system. The cooling system includes at least one active cooling cell. The heat-generating structure(s) are coupled with the cooling system. The active cooling cell(s) are configured to utilize vibrational motion to drive a fluid for transferring heat from the heat-generating structure(s). The cooling system is coupled with and contained by the housing.
Abstract:
A doorbell system is disclosed. The doorbell system includes a housing, a heat-generating structure, and a cooling system. The housing is configured to be coupled to a structure. The heat-generating structure and cooling system are coupled with the housing. The cooling system includes at least one active cooling cell. The heat-generating structure may be thermally coupled with the cooling system. The active cooling cell(s) are configured to utilize vibrational motion to drive a fluid for transferring heat from the heat-generating structure. The cooling system is coupled with and contained by the housing.
Abstract:
A filtration and purification processing method includes following steps: (1) providing a filtration and purification device; (2) performing a gas introduction, filtration, and detection procedure; (3) performing a detection and determination procedure to the purified gas; (4) performing a circulating filtration and detection procedure to the purified gas; and (5) repeating filtration and purification procedures to the purified gas several times and guiding out the purified gas.
Abstract:
A system and/or method for utilizing MEMS switching technology to operate MEMS sensors. As a non-limiting example, a MEMS switch may be utilized to control DC and/or AC bias applied to MEMS sensor structures. Also for example, one or more MEMS switches may be utilized to provide drive signals to MEMS sensors (e.g., to provide a drive signal to a MEMS gyroscope).
Abstract:
A system and/or method for utilizing MEMS switching technology to operate MEMS sensors. As a non-limiting example, a MEMS switch may be utilized to control DC and/or AC bias applied to MEMS sensor structures. Also for example, one or more MEMS switches may be utilized to provide drive signals to MEMS sensors (e.g., to provide a drive signal to a MEMS gyroscope).
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
Plastic microfluidic structures having a substantially rigid diaphragm that actuates between a relaxed state wherein the diaphragm sits against the surface of a substrate and an actuated state wherein the diaphragm is moved away from the substrate. As will be seen from the following description, the microfluidic structures formed with this diaphragm provide easy to manufacture and robust systems, as well readily made components such as valves and pumps.
Abstract:
The Invention concerns to a micro-actuator device for the use in biochip or bio-system. In order to achieve a micro-actuator device for the use as a micro pump in biosensors or bio-systems, or at least bio-chips, by which the actuation can be steered very precisely and effective, the solution is that the micro actuator consist of a photosensitive actuator element (1), which can be deformed from a reversal basic-form into an activated deformation form by photonic activation of a light source (3, 4, L1, L2) in order to generate with this controlled movement a defined flow in a gas or a liquid.