Abstract:
A scanning electron microscope has an electron source for illuminating a primary electron beam on a specimen wafer, an accelerating electrode, a condenser lens, a deflector, an objective lens, a detector for acquiring a digital image by sampling a signal of emissive electrons generated from the specimen wafer, a digitizing means, an image memory for storing, displaying or processing the acquired digital image, an input/output unit, an image creation unit and an image processor. The scanning electron microscope is provided with a sampling unit for sampling the emissive electron signal at intervals each smaller than the pixel size of the digital image to be stored, displayed or processed and an image creation process means for enlarging the pixel size on the basis of the sampled emissive electron signal to create a digital image.
Abstract:
Methods and systems for monitoring semiconductor fabrication processes are provided. A system may include a stage configured to support a specimen and coupled to a measurement device. The measurement device may include an illumination system and a detection system. The illumination system and the detection system may be configured such that the system may be configured to determine multiple properties of the specimen. For example, the system may be configured to determine multiple properties of a specimen including, but not limited to, a presence of macro and micro defects. In this manner, a measurement device may perform multiple optical and/or non-optical metrology and/or inspection techniques.
Abstract:
An apparatus and method to determine a property of a substrate by measuring, in the pupil plane of a high numerical aperture lens, an angle-resolved spectrum as a result of radiation being reflected off the substrate. The property may be angle and wavelength dependent and may include the intensity of TM- and TE-polarized radiation and their relative phase difference.
Abstract:
An ultraviolet (UV) catadioptric imaging system, with broad spectrum correction of primary and residual, longitudinal and lateral, chromatic aberrations for wavelengths extending into the deep UV (as short as about 0.16 μm), comprises a focusing lens group with multiple lens elements that provide high levels of correction of both image aberrations and chromatic variation of aberrations over a selected wavelength band, a field lens group formed from lens elements with at least two different refractive materials, such as silica and a fluoride glass, and a catadioptric group including a concave reflective surface providing most of the focusing power of the system and a thick lens providing primary color correction in combination with the focusing lens group. The field lens group is located near the intermediate image provided by the focusing lens group and functions to correct the residual chromatic aberrations. The system is characterized by a high numerical aperture (typ. greater than 0.7) and a large flat field (with a size on the order of 0.5 mm). The broad band color correction allows a wide range of possible UV imaging applications at multiple wavelengths.
Abstract:
Methods and systems for monitoring semiconductor fabrication processes are provided. A system may include a stage configured to support a specimen and coupled to a measurement device. The measurement device may include an illumination system and a detection system. The illumination system and the detection system may be configured such that the system may be configured to determine multiple properties of the specimen. For example, the system may be configured to determine multiple properties of a specimen including, but not limited to, a thickness of a structure on a specimen and at least one additional property of the specimen. In this manner, a measurement device may perform multiple optical and/or non-optical metrology and/or inspection techniques.
Abstract:
Methods and systems for monitoring semiconductor fabrication processes are provided. A system may include a stage configured to support a specimen and coupled to a measurement device. The measurement device may include an illumination system and a detection system. The illumination system and the detection system may be configured such that the system may be configured to determine multiple properties of the specimen. For example, the system may be configured to determine multiple properties of a specimen including, but not limited to, a characteristic of a layer formed on a specimen by a deposition process. In this manner, a measurement device may perform multiple optical and/or non-optical metrology and/or inspection techniques.
Abstract:
A method, computer program product and system for assessing the impact of anomalies in a physical device. An anomaly may be detected in an integrated circuit. Upon detecting an anomaly, an image of the anomaly may be captured. A design layout of the image may be obtained. The image coordinates of the detected anomaly may be transformed into a common reference system, such as the design layout. By using a common unit of reference instead of different reference systems, automatic coordination of the integrated circuit and the design layout may have to be performed once instead of multiple times for multiple tools. The image coordinates of the detected anomaly may be transformed to the coordinates of a common reference system by vectorizing the image, matching polygons in both the image and the design layout and aligning the image of the anomaly with the design layout of the image.
Abstract:
A method of inspecting a subject integrated circuit. A set of historical integrated circuits is inspected to detect defects and produce historical data. Features of the historical integrated circuits that have an occurrence of defects that is greater than a given limit are designated as high risk features, based on the historical data. Locations of the high risk features are identified on the subject integrated circuit. The locations of the high risk features are input into an inspection tool, and the locations of the high risk features on the integrated circuit are inspected to at least one of detect defects and measure critical dimensions, and produce subject data.
Abstract:
A method and system are presented for use in controlling the quality of a reticle. The method includes processing and analyzing reference data and test data, and generating output data indicative of the current condition of the reticle. The reference data is indicative of at least a portion of a reference pattern, which is produced on a reference article by using said reticle, when in a satisfied condition. The test data is indicative of a test pattern produced on an identical article using said reticle when in the current condition, a certain time period after said reticle has been in use or stored.
Abstract:
Methods and systems for monitoring semiconductor fabrication processes are provided. A system may include a stage configured to support a specimen and coupled to a measurement device. The measurement device may include an illumination system and a detection system. The illumination system and the detection system may be configured such that the system may be configured to determine multiple properties of the specimen. For example, the system may be configured to determine multiple properties of a specimen including, but not limited to, critical dimension, a presence of defects, and a thin film characteristic. In this manner, a measurement device may perform multiple optical and/or non-optical metrology and/or inspection techniques.