Abstract:
An illumination system and method is disclosed for maintaining a consistent change in illumination value among a group of illumination devices whenever a change command is manually sent from a keypad to those illumination devices. The consistent change results from maintaining a common start illumination value among not only the group, but also the keypad which controls the group. From the start illumination value, the keypad can then compute an end illumination value depending upon the amount of time that the increase or decrease in illumination value button is depressed and held. Since the start change signal can arrive on different illumination devices within the group depending upon where each illumination device is geographically located, a masking time is reserved after the button is released so that enough time is allocated for each of the illumination devices within that group to arrive at a common end illumination value regardless of their disparate location to the keypad, the number of hops or interference therebetween.
Abstract:
Wireless lighting control systems and methods for controlling the illumination of one or more light fixtures are disclosed, including self-commissioning of hardware. Embodiments include a server connected to a wide area network and having software for configuring, monitoring, and controlling lighting fixtures at a site. The control system also includes a wireless gateway at the site initiating communication with the server via a cellular network. Wireless devices initiate communication with the wireless gateway via a mesh network and each wireless device can be wired to control at least one lighting fixture. Once hardware of the site system (e.g., a gateway and/or any device) is mounted or positioned in the appropriate location and powered on, the hardware will self-commission by automatically initiating communications. The gateway will initiate communication and identify itself to server system. When the devices are powered on, they identify themselves to the gateway and the gateway can inform the server system of the devices.
Abstract:
A foldable display apparatus, a method of manufacturing the same, and a controlling method of the same are disclosed. The foldable display apparatus includes a substrate including a metal thin film and an insulating layer provided on the metal thin film, an organic light-emitting unit formed on the substrate and emitting light in an direction away from the substrate, and a thin film encapsulating layer for encapsulating the organic light-emitting unit. The foldable display apparatus may be folded in a direction such that the metal thin film is exposed.
Abstract:
A system monitors operational status of a lighting element. A lighting fixture processor instructs a lighting element to illuminate at a predetermined time, receives sensed light level information from the light sensing element, and transmits a message including information representing the sensed light level. A room controller can control some or all of these steps. A daylighting arrangement includes a room controller that instructs the lighting fixtures of a lighting group to illuminate their lighting elements at a predetermined time of day. Sensed light level information is obtained and transmitted to the room controller, which determines an initial daylighting target for the lighting fixture group based on an average of the sensed light level information. The room controller instructs the lighting fixtures to illuminate their respective lighting elements in accordance with the initial daylighting target.
Abstract:
Lighting units, systems, and methods are described herein for determining whether occupancy detections are legitimate or not. Methods and systems are further described herein for powering down a network of power over ethernet (PoE) components.
Abstract:
In one aspect, the present disclosure relates to a self identifying light source including an emitter that produces visible light; and an autonomous modulator in electrical communication with the emitter that automatically and continually modulates the visible light produced by the emitter, wherein the modulated visible light represents an identification code of the light source. In some embodiments, the emitter is a light emitting diode (LED) and further comprises an LED driver that provides a specified voltage and current to each LED in the light source.
Abstract:
Provided herein an apparatus for generating plasma, the apparatus including a nozzle array, first electrode, and housing. The nozzle discharges plasma. The first electrode is disposed to surround the nozzle array. The housing is disposed to surround the nozzle array and first electrode. The nozzle includes a plurality of nozzles disposed adjacent to one another and in the form of an array, each nozzle configured to discharge plasma. Therefore, it is possible to generate a large size plasma evenly and stably.
Abstract:
A control method according to the present disclosure causes a computer of an information apparatus to: display a display screen representing a floor plan for one floor including at least two or more rooms; display an illumination icon representing the one or more illumination devices on the display screen representing the floor plan, the illumination icon being commonly used for the two or more rooms included in the floor plan; and output to the network a first control command, when selection of the illumination icon is sensed, and when selection of a first room among the at least two or more rooms included in the floor plan is sensed, the first control command controlling on/off of power for an illumination device corresponding to the first room.