Abstract:
A method of identifying a molecule is disclosed. A molecule is drawn to a nanopore by applying a first voltage signal to a pair of electrodes during a first period, wherein the first voltage signal causes a first ionic current through the nanopore that is indicative of a property of a portion of the molecule proximate to the nanopore. The molecule is released from the nanopore by applying a second voltage signal to the pair of electrodes during a second period, wherein the second voltage signal causes a second ionic current through the nanopore. The first period and the second period are determined based at least in part on a net ionic current through the nanopore comprising the first ionic current and the second ionic current.
Abstract:
The present disclosure provides devices, systems and methods for sequencing nucleic acid molecules. Nucleic acid molecules can be sequenced with a high accuracy (e.g., greater than 97% in a single pass) using a chip comprising an array of independently addressable nanopore sensors at a density of at least about 500 sites per 1 mm2. An individual nanopore sensor can include a nanopore in a membrane that is adjacent or in proximity to a sensing electrode.
Abstract:
A device for controlling, detecting, and measuring a molecular complex is disclosed. The device comprises a common electrode. The device further comprises a plurality of measurement cells. Each measurement cell includes a cell electrode and an integrator electronically coupled to the cell electrode. The integrator measures the current flowing between the common electrode and the cell electrode. The device further comprises a plurality of analog-to-digital converters, wherein an integrator from the plurality of measurement cells is electrically coupled to one analog-to-digital converter of the plurality of analog-to-digital converters.
Abstract:
A system for regulating a temperature of a measurement array is disclosed. The system includes a measurement array including a plurality of sensors, wherein the plurality of sensors are integrated onto an integrated circuit die. The system includes a thermal sensor integrated onto the integrated circuit die, wherein the thermal sensor senses a temperature associated with the plurality of sensors. The system further includes a heat pump coupled to the integrated circuit die, wherein the heat pump is controlled by a feedback control circuit including the thermal sensor.
Abstract:
A method of exporting measurements of a nanopore sensor on a nanopore based sequencing chip is disclosed. An electrical characteristic associated with the nanopore sensor is measured. The electrical characteristic associated with the nanopore sensor is processed. A summary for the electrical characteristic and one or more previous electrical characteristics is determined. The summary for the electrical characteristic and the one or more previous electrical characteristics are exported. Determining the summary includes determining that the electrical characteristic and at least a portion of the one or more previous electrical characteristics correspond to a base call event at the nanopore sensor. The summary represents the electrical characteristic and the at least a portion of the one or more previous electrical characteristics.
Abstract:
A biochip for molecular detection and sensing is disclosed. The biochip includes a substrate. The biochip includes a plurality of discrete sites formed on the substrate having a density of greater than five hundred wells per square millimeter. Each discrete site includes sidewalls disposed on the substrate to form a well. Each discrete site includes an electrode disposed at the bottom of the well. In some embodiments, the wells are formed such that cross-talk between the wells is reduced. In some embodiments, the electrodes disposed at the bottom of the wells are organized into groups of electrodes, wherein each group of electrodes shares a common counter electrode. In some embodiments, the electrode disposed at the bottom of the well has a dedicated counter electrode. In some embodiments, surfaces of the sidewalls are silanized such that the surfaces facilitate the forming of a membrane in or adjacent to the well.
Abstract:
A nanopore based sequencing chip is disclosed. The sequencing chip comprises a first portion made from a first wafer. The first portion includes an array of nanopore cells. The first portion further includes a measurement circuit connected to one or more nanopore cells, the measurement circuit producing an output measurement signal. The first portion further includes one or more vias transmitting the output measurement signal. The sequencing chip further includes a second portion made from a second wafer, the second portion comprising one or more corresponding vias receiving the output measurement signal.
Abstract:
A device having an integrated noise shield is disclosed. The device includes a plurality of vertical shielding structures substantially surrounding a semiconductor device. The device further includes an opening above the semiconductor device substantially filled with a conductive fluid, wherein the plurality of vertical shielding structures and the conductive fluid shield the semiconductor device from ambient radiation. In some embodiments, the device further includes a conductive bottom shield below the semiconductor device shielding the semiconductor device from ambient radiation. In some embodiments, the opening is configured to allow a biological sample to be introduced into the semiconductor device. In some embodiments, the vertical shielding structures comprise a plurality of vias, wherein each of the plurality of vias connects more than one conductive layers together. In some embodiments, the device comprises a nanopore device, and wherein the nanopore device comprises a single cell of a nanopore array.
Abstract:
A system for detecting electrical properties of a molecular complex is disclosed. The system includes an electrode electrically coupled to a molecular complex that outputs an electrical signal affected by an electrical property of the molecular complex, wherein the effect of the electrical property of the molecular complex on the electrical signal is characterized by an expected bandwidth. The system further includes an integrating amplifier circuit configured to: receive the electrical signal from the electrode. The integrating amplifier circuit is further configured to selectively amplify and integrate a portion of the electrical signal over time within a predetermined bandwidth, wherein the predetermined bandwidth is selected at least in part based on the expected bandwidth.
Abstract:
Techniques for characterizing a molecule are described herein. In one example, a portion of the molecule is trapped in a nanopore, a variable voltage is applied across the nanopore until the trapped portion of molecule is moved within the nanopore, and the molecule is characterized based on the electrical stimulus required to affect movement of at least a portion of the trapped portion of the molecule within the nanopore.