Abstract:
An image display device includes a body for displaying an image, a position adjusting device at a rear of the body for adjusting a height, a left/right angle, and a forward/backward slope of the body, a base, a support having an upper end rotatably coupled to the position adjusting device and a lower end rotatably coupled to the base, and a seating recess in an upper surface of the base for folding and placing the support therein, thereby permitting adjustment of the height, the left/right angle, and the forward/backward slope of the body.
Abstract:
According to some embodiments of the invention, transistors have channel regions between channel-portion holes. Methods of forming the same include at least two channel-portion holes disposed in a semiconductor substrate. Line patterns are formed in parallel to be spaced apart from each other on a main surface of the semiconductor substrate to fill the channel-portion holes. A channel region is disposed in the semiconductor substrate below the line patterns. At this time, the channel region is formed between the channel-portion holes and also covers lower portions of the channel-portion holes. Driving current capability and refresh characteristics of DRAMs utilizing the inventive transistors are improved.
Abstract:
Semiconductor devices include an active region defined in a semiconductor substrate having first type impurity ions. A retrograde region is in the active region and has second type impurity ions. An upper channel region is on the retrograde region in the active region and has the first type impurity ions. Source and drain regions are on the upper channel region in the active region and spaced apart from each other. A gate electrode fills a gate trench formed in the active region. The gate electrode is disposed between the source and drain regions and extends into the retrograde region through the upper channel region. DRAM devices and methods are also provided.
Abstract:
An upper frame structure for supporting a cab of construction machinery is disclosed, which can support the cap mounted on the upper frame when a vertical load, which is so much that the cab structure is plastically deformed, is applied to the upper frame. The upper frame structure includes a center frame having a bottom plate on which a swing ring gear is mounted and a pair of side plates vertically fixed to the bottom plate and on which operation devices are mounted; a left frame mounted on a left side of the center frame and having a left side frame on which the cab is mounted; reinforcement members each of which has one end fixed by welding to a side surface of the side plate of the center frame and the other end fixed by welding to a side surface of the left side frame, and on which the cap is mounted; and a fastening member installed on the bottom plate to offset a load vertically applied to the cab and a load laterally applied to the cab, and fixing the reinforcement member to the bottom plate.
Abstract:
The present invention relates to a graft copolymer and a method for preparing the same, and more precisely a graft copolymer prepared by the steps of preparing a living activator with a single monomer and a block copolymer of a vinyl aromatic hydrocarbon or a conjugated diene hydrocarbon; and then grafting the prepared living activator to polyolefin polymer, and a method for preparing the same. According to the method of the present invention, the individual vinyl aromatic hydrocarbon or conjugated diene hydrocarbon polymers, and a block copolymer thereof, can be grafted onto chlorinated polyolefin polymer as a branch by using a living activator, and the resultant graft copolymer can be widely applied to various high molecular additives, compatabilizers, waterproof sheets and asphalt, etc.
Abstract:
A reinforced upper frame for supporting a cabin of heavy construction equipment using a welding deformation preventing structure and a method of manufacturing the same are disclosed, in which even if a side frame is welded to a machined center frame, there is no thermal deformation around the machined portion. The reinforced upper frame includes a center frame having a lower plate machined to accommodate a swing ring gear, a lateral plate machined to accommodate an operation device, and a welding deformation preventing structure fixed to one side of the lower plate and lateral plate prior to welding, in which a part of the cabin is mounted on the welding deformation preventing structure, and left and right frames each having a side channel disposed in a longitudinal direction of the center frame and a side frame welded to the structure for connecting the side channel and the center frame.
Abstract:
A solder ball-inspecting apparatus for a semiconductor component includes: a solder ball reservoir receiving a plurality of solder balls; a solder ball-transmitting tool provided with a plurality of ball-receiving apertures to which the solder balls received in the solder ball-reservoir are adhered and from which the adhered solder balls are separated to allow the solder balls to be seated on the semiconductor component; at least one electric pattern linearly interconnecting the ball-receiving apertures and having first and second ends that are to be electrically interconnected when the solder balls are correctly received in the respective solder ball-receiving apertures; an electric connection-detecting unit detecting electric connection of the electric pattern; and a determining-processing unit determining if the solder balls are corrected adhered to the ball-receiving apertures according to a detecting result of the electric connection-detecting unit.
Abstract:
An auto focusing method and apparatus for quantifying a focusing average value, comparing the focusing average value with an acceptance level of a preset focusing evaluation value, and iteratively focusing, while widening the depth of focus, when the focusing average value is lower than the acceptance level.
Abstract:
A repeating method for a wireless communication system which provides time and space diversities, and an apparatus thereof are disclosed. The method of repeating a forward link communication signal for a wireless communication system includes the steps of: a) transmitting the forward link communication signal through a first transmitting antenna; b) delaying the forward link communication signal for a predetermined time period; and c) transmitting a delayed forward link communication signal which is generated by step b) through a second transmitting antenna. According to the method, when repeating forward and reverse link communication signals, time and space diversities are respectively provided to the base station and the mobile stations.
Abstract:
Methods of forming FRAM devices include the steps of forming first and second field effect access transistors in a semiconductor substrate, forming first and second bit lines (BL) electrically coupled to a drain region of the first field effect access transistor and a drain region of the second field effect access transistor, respectively, and forming first and second ferroelectric capacitors (CF) between the first and second bit lines in order to improve integration density. These first and second ferroelectric capacitors share a first electrode extending between the first and second bit lines and have respective second electrodes electrically coupled to respective source regions of the first and second field effect access transistors. The preferred methods may also include the step of forming a field oxide isolation region adjacent a face of the substrate and extending between the first and second field effect access transistors. In addition, a step may be provided to form a first interlayer dielectric layer on the first and second field effect access transistors and on the field oxide isolation region. The step of forming the first and second ferroelectric capacitors may also comprise the preferred steps of forming a first conductive layer on the first interlayer dielectric layer, forming a ferroelectric dielectric layer (e.g., PZT, PLZT) on the first conductive layer, forming a second conductive layer on the ferroelectric dielectric layer, patterning the second conductive layer and the ferroelectric dielectric layer using a first mask to define the second electrodes of the first and second ferroelectric capacitors and then patterning the first conductive layer using a second mask to define the first electrode which is shared by the first and second ferroelectric capacitors.