Abstract:
An electrode lead of a pacemaker includes a lead wire. The lead wire includes at least one sub-lead wire and an electrode head electrically connected with the lead wire. The sub-lead wire includes a core wire structure and a carbon nanotube composite structure wound around the core wire structure. The pacemaker includes a pulse generator and the electrode lead electrically connected to the pulse generator.
Abstract:
An integrated communications network may be integrated with existing payment systems to provide for more efficient and secure payment related communications. The integrated communications network may use mobile network protocol encapsulation to provide more efficient, faster, and more robust payment related communications to a payment processor across a mobile network. The integrated communications network may implement a location-aware network communications system that may allow a payment processor to obtain additional information about a consumer using a location-aware header of a network communication.
Abstract:
Methods and systems for automatic classification of images of internal structures of human and animal bodies. A method includes receiving a magnetic resonance (MR) image testing model and determining a testing volume of the testing model that includes areas of the testing model to be classified as bone or cartilage. The method includes modifying the testing model so that the testing volume corresponds to a mean shape and a shape variation space of an active shape model and producing an initial classification of the testing volume by fitting the testing volume to the mean shape and the shape variation space. The method includes producing a refined classification of the testing volume into bone areas and cartilage areas by refining the boundaries of the testing volume with respect to the active shape model and segmenting the MR image testing model into different areas corresponding to bone areas and cartilage areas.
Abstract:
A method for controlling battery replacement based on distance data and a system thereof are provided. The method includes: reading current distance data of an electric vehicle, wherein the current distance data indicates the total distance that the electric vehicle has traveled; receiving related recharge information for the electric vehicle submitted by a user, wherein the related recharge information includes a distance account, and the distance account indicates that the user currently adopts a billing policy in which the user is credited with a fixed amount of distance in a fixed period of time; and determining whether to perform an operation of replacing a battery of the electric vehicle according to the distance data and the billing policy. By using the present invention, distance data of an electric vehicle and distance account information can be obtained, and by using the distance data and the distance account information battery replacement can be controlled conveniently, which ensures continuous electricity provided for the green operation of the electric vehicle.
Abstract:
A pacemaker is provided. The pacemaker includes an electrode line having a lead and an electrode. The electrode includes a carbon nanotube composite structure having a matrix and at least one carbon nanotube structure located in the matrix. A first end of each carbon nanotube structure protrudes out of a first surface of the matrix for stimulating the human tissue, and a second end of each carbon nanotube structure protrudes out of a second surface of the matrix to electrically connect to the lead.
Abstract:
A pacemaker includes an electrode line having a lead and an electrode. The electrode includes a carbon nanotube composite structure having a matrix and a carbon nanotube structure located in the matrix. The matrix comprises a first surface and a second surface substantially perpendicular to the first surface. The carbon nanotube structure includes a first end electrically connect to the lead. The carbon nanotube structure is substantially parallel to the second surface of the matrix. A distance between the carbon nanotube structure and the second surface of the matrix is less than 10 micrometers.
Abstract:
A method for making a carbon nanotube film structure is related. A rotator having an axis and a rotating surface is provided. A carbon nanotube film drawn from a carbon nanotube array is adhered on the rotating surface of the rotator. The rotator is rotated about the axis to wrap the carbon nanotube film on the rotating surface of the rotator to form a carbon nanotube layer. The carbon nanotube layer is cut along a direction to form the carbon nanotube film structure.
Abstract:
An electrode lead of a pacemaker includes a metal conductive core, a carbon nanotube film, and an insulator. The metal conductive core defines an extending direction. The carbon nanotube film at lest partially surrounds the metal conductive core and is electrically insulated from the metal conductive core. The insulator is located between the metal conductive core and the carbon nanotube film. The carbon nanotube film includes a plurality of carbon nanotubes substantially extending along the extending direction of the metal conductive core. A bared part is defined at one end of the electrode lead. A pacemaker using the above mentioned electrode lead is also disclosed.
Abstract:
An electrode lead of a pacemaker includes a lead wire. The lead wire includes at least one sub-lead wire and an electrode head electrically connected with the lead wire. The sub-lead wire includes a core wire structure and a carbon nanotube composite structure wound around the core wire structure. The pacemaker includes a pulse generator and the electrode lead electrically connected to the pulse generator.
Abstract:
The invention is directed to systems, methods, and apparatus for carrying out multi-stage amplification reactions, especially under fluidly closed conditions. In one aspect, methods of the invention are carried out in a fluidly closed reaction system that permits the isolation of a portion of a first (or prior) reaction mixture and its use as a sample or specimen in a second (or subsequent) reaction mixture, thereby substantially avoiding interfering effects that first reaction components may have in the second reaction if both reaction mixtures were simply combined together. In this aspect, systems, methods, and apparatus of the invention may be used with any amplification reaction that permits multiple stages of amplification based on the use of nested primers.