Abstract:
A parallel processing system for processing samples is described. In one embodiment, the parallel processing system includes an instrument interface parallel controller to control a tray motor driving system, a close-loop heater control and detection system, a magnetic particle transfer system, a reagent release system, a reagent pre-mix pumping system and a wash buffer pumping system.
Abstract:
The embodiments described herein relate to systems and methods for producing an evaporation barrier in a PCR vial. In some embodiments, beads with a particular distribution in diameters can be used to produce a barrier for reducing the evaporation of liquid PCR samples within the PCR vial. In some embodiments, the beads can be pre-filled in the PCR vial. In use, liquid samples and/or liquid reagents can be introduced in the PCR vial pre-filled with the beads, such that the beads can be driven to the surface of the liquid PCR sample through the buoyancy of the beads.
Abstract:
An apparatus for disrupting cells or viruses comprises a container having a chamber for holding the cells or viruses. The container includes at least one flexible wall defining the chamber. The apparatus also includes a transducer for impacting an external surface of the flexible wall to generate pressure waves in the chamber. The apparatus also includes a pressure source for increasing the pressure in the chamber. The pressurization of the chamber ensures effective coupling between the transducer and the flexible wall. The apparatus may also include beads in the chamber for rupturing the cells or viruses.
Abstract:
The invention is directed to systems, methods, and apparatus for carrying out multi-stage amplification reactions, especially under fluidly closed conditions. In one aspect, methods of the invention are carried out in a fluidly closed reaction system that permits the isolation of a portion of a first (or prior) reaction mixture and its use as a sample or specimen in a second (or subsequent) reaction mixture, thereby substantially avoiding interfering effects that first reaction components may have in the second reaction if both reaction mixtures were simply combined together. In this aspect, systems, methods, and apparatus of the invention may be used with any amplification reaction that permits multiple stages of amplification based on the use of nested primers.
Abstract:
A parallel processing system for processing samples is described. In one embodiment, the parallel processing system includes an instrument interface parallel controller to control a tray motor driving system, a close-loop heater control and detection system, a magnetic particle transfer system, a reagent release system, a reagent pre-mix pumping system and a wash buffer pumping system.
Abstract:
A parallel processing system for processing samples is described. In one embodiment, the parallel processing system includes an instrument interface parallel controller to control a tray motor driving system, a close-loop heater control and detection system, a magnetic particle transfer system, a reagent release system, a reagent pre-mix pumping system and a wash buffer pumping system.
Abstract:
A parallel processing system for processing samples is described. In one embodiment, the parallel processing system includes an instrument interface parallel controller to control a tray motor driving system, a close-loop heater control and detection system, a magnetic particle transfer system, a reagent release system, a reagent pre-mix pumping system and a wash buffer pumping system.
Abstract:
A cassette for preparing a sample is disclosed herein. The cassette includes a housing, which encloses the structures and the processes used to prepare the sample.
Abstract:
A cassette for preparing a sample is disclosed herein. The cassette includes a housing, which encloses the structures and the processes used to prepare the sample.
Abstract:
A device for lysing components (e.g., cells, spores, or microorganisms) of a fluid sample comprises a cartridge having a lysing chamber for receiving the sample and having at least one solid phase in the lysing chamber for capturing the sample components to be lysed. An ultrasonic transducer is coupled to a wall of the lysing chamber to transfer ultrasonic energy to the captured sample components.