Abstract:
The present invention relates to a nano-enhanced device for substance transfer between the device and a tissue. The device comprises a substrate with substantially aligned carbon nanotubes anchored within the substrate, and with at least one end of the carbon nanotubes protruding from the substrate. The protruding nanotube ends may be coated with a drug for delivery of the drug into body tissue. The present invention may be incorporated into an angioplasty catheter balloon or into a patch that is worn on the skin. The carbon nanotubes can be grouped in clusters to effectively form nano-needles which can transfer fluid to or from the subdermal tissue. The nano-needles can be used in conjunction with a sensor to ascertain body fluid information such as pH, glucose level, etc.
Abstract:
Hardware and software methodology are described for cardiac health measurement. Hemodynamic waveforms variously acquired for a subject are analyzed to calculate or approximate intrinsic frequencies in two domains in two domains across the Dicrotic Notch. The intrinsic frequencies provide metrics/measures that correlate to the cardiac health of the subject. The systems may be used for monitoring a condition and/or is diagnosis. Exemplary uses include identifying (diagnosing) the presence of arrhythmia, heat failure, atrial fibrillation, aneurysms, vessel stenosis or aortic valve dysfunction and the necessity for valve replacement and/or monitoring congestive heart failure progression, together with identifying the acute need for hospitalization in connection with daily testing for any such condition.
Abstract:
Methods for fastening nanoscale structures within an anchoring structure to form a nanostructure composite and nanostructure composites formed therefrom. A primary fluid layer is formed on an anchoring substrate. Nanostructures are provided on an initial substrate, the nanostructures having a defined height and orientation with respect to the initial substrate. The nanostructures are introduced to a desired depth in the primary fluid layer, such that the orientation of the nanostructures relative to the growth substrate is substantially maintained. The primary fluid layer comprises one or more fluid layers. Ones of multiple fluid layers are selected such that when altered to form an anchoring structure, a portion of the anchoring structure can be removed, permitting exposure of at least a portion of the nanostructures from the anchoring structure in which they are affixed. The growth substrate is removed. Ends or other parts of nanostructures may be exposed from the anchoring structure.
Abstract:
Systems, devices, and methods are provided for delivering a therapeutic substance to the eye of a subject with an automated apparatus. The apparatus can resemble a pair of eyeglasses that can assist in the alignment of a substance ejecting nozzle and energy sensor with the eye. The apparatus can eject the therapeutic substance and immediate response to the detection of a blink of the user's eye. The therapeutic substance can be ejected in a number of different forms including as a single droplet containing the entire prescribed dosage.
Abstract:
A microwave transceiver and feature extraction system is described. This system is adapted for measuring both electrical (ECG-related waveforms) and mechanical activity (heart sound and wall motion) of the heart and vessels, determining which signal features are related to which mechanical properties, and measurement of important hemodynamic parameters such as pressure, flow, and vessel's wall displacement. This system is non-invasive, portable, non-contacting and can remotely collect data at distances of
Abstract:
A device and method for three-dimensional (3-D) imaging using a defocusing technique is disclosed. The device comprises a lens, a central aperture located along an optical axis for projecting an entire image of a target object, at least one defocusing aperture located off of the optical axis, a sensor operable for capturing electromagnetic radiation transmitted from an object through the lens and the central aperture and the at least one defocusing aperture, and a processor communicatively connected with the sensor for processing the sensor information and producing a 3-D image of the object. Different optical filters can be used for the central aperture and the defocusing apertures respectively, whereby a background image produced by the central aperture can be easily distinguished from defocused images produced by the defocusing apertures.
Abstract:
Described is a method and apparatus for obtaining additional information from an object and a method for surface imaging and three-dimensional imaging. Single lens, single aperture, single sensor system and stereo optic systems may be modified in order to successfully generate surface maps of objects or three-dimensional representations of target objects. A variety of the aspects of the present invention provide examples of the use of an addressable pattern in order to overcome mismatching common to standard defocusing techniques.
Abstract:
A device and method for three-dimensional (3-D) imaging using a defocusing technique is disclosed. The device comprises a lens, at least one polarization-coded aperture obstructing the lens, a polarization-sensitive sensor operable for capturing electromagnetic radiation transmitted from an object through the lens and the at least one polarization-coded aperture, and a processor communicatively connected with the sensor for processing the sensor information and producing a 3-D image of the object.
Abstract:
Carbon nanotube needles and needle arrays are described in which the precursor pillars are etched by oxygen plasma treatment to provide tapered and/or sharp-tip needles. Processes, products by process, and devices incorporating the sharp-tip needles are further described.