Abstract:
Multiple measurements may be obtained via a single pin of an integrated circuit (IC) to set multiple control parameters of a light emitting diode (LED) controller within the IC. For example, a first input signal may be applied from the IC to two or more components via a single IC pin. A first output signal may be obtained from the two or more components via the single IC pin. A second input signal may be applied from the IC to the two or more components via the single IC pin, and a second output signal may be obtained from the two or more components via the single IC pin. A first parameter and a second parameter of the two or more components may be calculated based, at least in part, on the first output signal and the second output signal obtained via the single IC pin.
Abstract:
A turn-off transition time period, also referred to as a reverse recovery time period, may be compensated for by a controller of a power stage including a bipolar junction transistor (BJT). The reverse recovery time period may be measured in one switching cycle and a subsequent switching cycle may include compensations based on the measured reverse recovery time period. That is the switching on and off of the BJT may be compensated to obtain a desired average output current to a load. When the reverse recovery time period is known, an error in the peak current obtained due to the reverse recovery time period may be calculated. The calculated error may be used to offset the target peak current for controlling the switching of the BJT to begin a turn-off transition of the BJT earlier in a switching cycle and thus reduce error in peak current at the BJT.
Abstract:
A switch control circuit may be utilized for a sequence of switching events: a first event to activate a first switch and deactivate a second switch, wherein a current of an inductor coupled to the first switch and the second switch increases during the first event and has a positive value at an end of the first event; a second event to deactivate the first switch and activate the second switch, wherein the current of an inductor coupled to the first switch and the second switch decreases during the second event; and an impedance event during one of the first event and the second event such that during one of the first event and the second event, the impedance event causes an impedance of the one of the first switch and the second switch to decrease.
Abstract:
A bipolar junction transistor (BJT) may be used in a power stage DC-to-DC converter, such as a converter in LED-based light bulbs. The power stage may be operated by a controller to maintain a desired current output to the LED load. The controller may operate the power stage by monitoring a start and end of a reverse recovery time of the BJT. Information regarding the start and end of the reverse recovery time may be used in the control of the power stage to improve efficiency of the power stage.
Abstract:
An apparatus may include a scrambler element configured to receive an input signal and generate a scrambled thermometer code-like signal having a plurality of bits based on the input signal and having a plurality of possible quantization values. The scrambler element may generate at least one equivalent code of the scrambled thermometer code-like signal for each possible quantization value. For each of one or more of the possible quantization values, the scrambler element may be configured to generate a plurality of possible equivalent codes of the scrambled thermometer code-like signal. Responsive to the input signal indicating a change in quantization value of the scrambled thermometer code-like signal, the scrambler element may change the scrambled thermometer code-like signal by transitioning the smallest possible number of the plurality of bits of the scrambled thermometer code-like signal to change quantization value of the scrambled thermometer code-like signal in accordance with the input signal.
Abstract:
In one embodiment a heating mechanism is provided with an integrated circuit for testing and calibration purposes. During production testing, heating elements may be activated in order to quickly bring an integrated circuit up to operating temperature for temperature testing or calibration. Once the operating test temperature has been reached, the circuit can be quickly and easily tested to show it is operable within the design temperature range and/or to obtain calibration data to correct for temperature drift. Calibration data may be used to create correction data, which may be stored within the integrated circuit. During normal operation, the correction data may be used to compensate for variations in operation due to temperature.
Abstract:
A buck stage configured as a second stage of a lamp circuit for a light-emitting diode-based (LED-based) light bulb may reduce manufacturing costs associated with the bulb by reducing a size of a capacitor in the lamp circuit. A controller of the buck stage may adjust a duty cycle of a switch to increase a ripple, such as a voltage ripple, across the capacitor to increase accessibility of energy stored in the capacitor and decrease a ripple, such as in output current, to the LEDs.
Abstract:
A signal path may operate in one of a plurality of gain modes such that for each gain mode, the product of a digital gain and an analog signal gain of the signal path associated with the particular gain mode are approximately equal to a fixed path gain. During each of one or more calibration phases, a calibration system may measure analog signals at a plurality of nodes of the first path portion, calculate an actual analog gain associated with the gain mode based on the analog signals measured at the plurality of nodes, calculate an error between the fixed path gain and a mathematical product of the actual analog gain associated with the gain mode and the digital gain associated with the gain mode, and modify at least one of the digital gain and the analog gain associated with the gain mode in conformity with the error.
Abstract:
Methods and systems to provide compatibility between a load and a secondary winding of an electronic transformer driven by a leading-edge dimmer may include: (a) responsive to determining that energy is available from the electronic transformer, drawing a requested amount of power from the electronic transformer thus transferring energy from the electronic transformer to an energy storage device in accordance with the requested amount of power; and (b) transferring energy from the energy storage device to the load at a rate such that a voltage of the energy storage device is regulated within a predetermined voltage range.
Abstract:
In accordance with the present disclosure, a control circuit may be employed for controlling delivery of energy from an input of a lamp assembly to a load of the lamp assembly. The control circuit may transfer a first amount of energy from an input to a load (e.g., comprising one or more light-emitting diodes) to cause the load to generate light external to the lamp assembly in accordance with a control setting of a dimmer indicating a user-desired amount of energy to be transferred to the load. The control circuit may also transfer a second amount of energy from the input to a second load to cause the second load (e.g., comprising one or more lower-efficacy light-emitting diodes) to dissipate the second amount of energy external to the lamp assembly, wherein the second amount of energy comprises energy present in the input signal other than the first amount of energy.