Abstract:
Methods and systems for estimating motion of a vehicle are provided. Radar data pertaining to one or more stationary objects in proximity to the vehicle are obtained via one or more radar units of the vehicle. The motion of the vehicle is estimating using the radar data via a processor of the vehicle.
Abstract:
A positioning method for a mobile platform includes acquiring GPS position data associated with the mobile platform from a plurality of GPS satellites observable by the mobile platform. A set of wireless range measurements associated with the mobile platform and a plurality of wireless access points in communication with the mobile platform are received (e.g., via time-of-flight measurements). Wireless position data associated with the plurality of wireless access points is received from a server communicatively coupled to the mobile platform over a network. A corrected position of the mobile platform based on the wireless position data, the wireless range measurements, and the GPS position data.
Abstract:
A method for autonomously aligning a tow hitch ball on a towing vehicle and a trailer drawbar on a trailer through a human-machine interface (HMI) assisted visual servoing process. The method includes providing rearview images from a rearview camera. The method includes touching the tow ball on a display to register a location of the tow ball in the image and touching the drawbar on the display to register a location of a target where the tow ball will be properly aligned with the drawbar. The method provides a template pattern around the target on the image and autonomously moves the vehicle so that the tow ball moves towards the target. The method predicts a new location of the target as the vehicle moves and identifies the target in new images as the vehicle moves by comparing the previous template pattern with an image patch around the predicted location.
Abstract:
A method for state of health estimation and misalignment correction in a vehicle lane management system. Two lane sensing systems onboard a vehicle provide lane information to a lane management system, where one of the lane sensing systems may be a dedicated forward-viewing lane sensing system, and the other may use images from a surround-view camera system. The lane information is stored in a fixed-length, moving-window circular data buffer. A correlation coefficient is recursively computed from the lane information from the two lane sensing systems and used to calculate a state of health of the lane management system. A linear regression relationship is also computed between the data from the two lane sensing systems, and the scale factor and offset value are applied to the lane information from the second lane sensing system before a fusion calculation is performed on the lane information from the two lane sensing systems.
Abstract:
A method of detecting and tracking objects using multiple radar sensors. Objects relative to a host vehicle are detected from radar data generated by a sensing device. The radar data includes Doppler measurement data. Clusters are formed, by a processor, as a function of the radar data. Each cluster represents a respective object. Each respective object is classified, by the processor, as stationary or non-stationary based on the Doppler measurement data of each object and a vehicle speed of the host vehicle. Target tracking is applied, by the processor, on an object using Doppler measurement data over time in response to the object classified as a non-stationary object; otherwise, updating an occupancy grid in response to classifying the object as a stationary object.
Abstract:
A method for state of health estimation and misalignment correction in a vehicle lane management system. Two lane sensing systems onboard a vehicle provide lane information to a lane management system, where one of the lane sensing systems may be a dedicated forward-viewing lane sensing system, and the other may use images from a surround-view camera system. The lane information is stored in a fixed-length, moving-window circular data buffer. A correlation coefficient is recursively computed from the lane information from the two lane sensing systems and used to calculate a state of health of the lane management system. A linear regression relationship is also computed between the data from the two lane sensing systems, and the scale factor and offset value are applied to the lane information from the second lane sensing system before a fusion calculation is performed on the lane information from the two lane sensing systems.
Abstract:
A system and method for fusing the outputs from multiple LiDAR sensors on a vehicle that includes cueing the fusion process in response to an object being detected by a radar sensor and/or a vision system. The method includes providing object files for objects detected by the LiDAR sensors at a previous sample time, where the object files identify the position, orientation and velocity of the detected objects. The method projects object models in the object files from the previous sample time to provide predicted object models. The method also includes receiving a plurality of scan returns from objects detected in the field-of-view of the sensors at a current sample time and constructing a point cloud from the scan returns. The method then segments the scan points in the point cloud into predicted scan clusters, where each cluster identifies an object detected by the sensors.
Abstract:
A method for calculating a virtual target path around a target object that includes providing scan points identifying detected objects and separating the scan points into target object scan points and other object scan points. The method identifies a closest scan point from the target object scan points and identifies a path point that is a predetermined safe distance from the closest scan point. The method determines a straight target line adjacent to the target object that goes through the path point, and determines a distance between the target line and each of the other objects and determines whether all of the distances are greater than a predetermined threshold distance. The method identifies curve points for each other object whose distance is less than the predetermined threshold distance, and identifies a curve path that connects the curve points to be the virtual target path using a quadratic polynomial function.
Abstract:
A method and system for localizing a vehicle in a digital map includes generating GPS coordinates of the vehicle on the traveled road and retrieving from a database a digital map of a region traveled by the vehicle based on the location of the GPS coordinates. The digital map includes a geographic mapping of a traveled road and registered roadside objects. The registered roadside objects are positionally identified in the digital map by longitudinal and lateral coordinates. Roadside objects in the region traveled are sensed by the vehicle. The sensed roadside objects are identified on the digital map. A vehicle position on the traveled road is determined utilizing coordinates of the sensed roadside objects identified in the digital map. The position of the vehicle is localized in the road as a function of the GPS coordinates and the determined vehicle position utilizing the coordinates of the sensed roadside objects.
Abstract:
A radar signal processing method for improved occupant vital monitoring includes a method for detecting vital signs using at least one radar sensor mounted to a vehicle. The method includes detecting a plurality of target candidates using the at least one radar sensor, analyzing the plurality of target candidates to generate a list of targets, steering the at least one radar sensor towards the target using the angle of arrival to the target, and detecting a vital signal of the target based on the range using the at least one radar sensor.