Abstract:
A robotic surgical system is configured with rigid, curved cannulas that extend through the same opening into a patient's body. Surgical instruments with passively flexible shafts extend through the curved cannulas. The cannulas are oriented to direct the instruments towards a surgical site. Various port features that support the curved cannulas within the single opening are disclosed. Cannula support fixtures that support the cannulas during insertion into the single opening and mounting to robotic manipulators are disclosed. A teleoperation control system that moves the curved cannulas and their associated instruments in a manner that allows a surgeon to experience intuitive control is disclosed.
Abstract:
A surgical device comprises a tube including a proximal segment and a distal segment and a plurality of force transmission elements coupled to the tube. The force transmission elements are actuatable to alter the distal segment of the tube between a flexible state and a stiffened state. The device also comprises a plurality of routing members. Each routing member is coupled to a wall of the tube. The routing members are configured to receive and route the force transmission elements along a length of the tube while permitting the length of the tube to flex and compress. The device also comprises a decoupling structure that generates a reduced force transmitted to the proximal segment when an applied force is applied to the distal segment by the force transmission elements.
Abstract:
Localized strain is effectively eliminated in a shape sensing optical fiber where the fiber exits a link in a kinematic chain. In one aspect, the fiber is positioned in a channel within a fiber fixture portion of the link, and a surface of a lip of the channel is curved. The curved surface of the lip begins tangent to a wall of the channel and has a maximum radius of curvature that is less than the minimum bend radius that the fiber will experience during shape sensing. In another aspect, the fiber is positioned within a shape memory alloy tube that extends from the link.
Abstract:
In a robotic endoscope system, the orientation of a captured camera view at a distal tip of a robotic endoscope and displayed on a screen viewable by an operator of the endoscope is automatically maintained at a roll orientation associated with a setpoint so as not to disorient the operator as the endoscope is moved, flexed and its tip turned in different orientations. A processor generates a current commanded state of the tip from operator input and modifies it to maintain the setpoint roll orientation. To generate the modified current commanded state, the current commanded roll position and velocity are constrained to be a modified current commanded roll position and velocity that have been modified according to a roll angular adjustment indicated by a prior process period commanded state of the tip and the setpoint. The processor then commands the robotic endoscope to be driven to the modified commanded state.
Abstract:
A medical system may comprise a catheter that includes an elongate body and a main lumen extending longitudinally through the elongate body. The medical system may also comprise a vision probe that includes a tube extendable through the main lumen of the catheter and comprising a flexible body having an outermost wall and an innermost wall, the innermost wall defining a central lumen. The flexible body contains a plurality of channels formed within the flexible body of the tube and separated from the central lumen by the innermost wall. The plurality of channels includes oblong channels for irrigation and suction and auxiliary channels. The oblong channels have concentric arc shaped surfaces forming an arcuate channel cross-section. The auxiliary channels have a different shape than the one or more oblong channels. The vision probe also includes an imaging system and illumination fibers running through respective auxiliary channels in the tube.
Abstract:
Information extracted from sequential images captured from the perspective of a distal end of a medical device moving through an anatomical structure are compared with corresponding information extracted from a computer model of the anatomical structure. A most likely match between the information extracted from the sequential images and the corresponding information extracted from the computer model is then determined using probabilities associated with a set of potential matches so as to register the computer model of the anatomical structure to the medical device and thereby determine the lumen of the anatomical structure which the medical device is currently in. Sensor information may be used to limit the set of potential matches. Feature attributes associated with the sequence of images and the set of potential matches may be quantitatively compared as part of the determination of the most likely match.
Abstract:
An instrument system includes a flexible shaft having a proximal portion and a distal portion, a backend mechanism coupled to the proximal portion of the flexible shaft, and a plurality of tendons. The backend mechanism includes a plurality of capstans. Each capstan engages a respective drive motor that rotates to cause rotation of the capstan. A first capstan of the plurality of capstans is engageable with a first respective drive motor while a second capstan of the plurality of capstans is disengaged from a second respective drive motor. Each of the plurality of tendons includes a proximal section coupled to one of the plurality of capstans and a distal section coupled to a member disposed at the distal portion of the flexible shaft.
Abstract:
A medical system comprises an elongate instrument including a camera configured to capture at least one real-time image of anatomy within a patient anatomy. The system further comprises a processor configured to display, on one or more display screens, a three-dimensional patient computer model of the patient anatomy. The processor is further configured to display, over the three-dimensional patient computer model, a representation of a view angle of the elongate instrument. The representation of the view angle is displayed so as to appear to project from a synthetic representation of a distal tip of the elongate instrument. The processor is further configured to display the at least one captured real-time image.
Abstract:
A medical system comprises an elongate instrument including a camera configured to capture at least one real-time image of anatomy within a patient anatomy. The medical system further comprises a processor configured to display, on one or more display screens: a three-dimensional patient computer model of the patient anatomy; a synthetic representation of the elongate instrument registered to the three-dimensional patient computer model; over the patient computer model, a representation of a view angle of the elongate instrument, the representation of the view angle being displayed so as to appear to project from a distal tip of the synthetic representation of the elongate instrument; and in a position based on the registration of the synthetic representation of the elongate instrument to the patient computer model, the at least one captured real-time image so as to appear to project from the distal tip of the synthetic representation of the elongate instrument.
Abstract:
A medical system includes a medical instrument, at least one actuator, and a controller. The medical instrument defines a central axis and includes a steerable tip. The controller is configured to command the at least one actuator to cause active steering control of the medical instrument according to an insertion control mode after movement of the medical instrument is detected and exceeds a first threshold value in an insertion direction and to deactivate the at least one actuator to cause the steerable tip of the medical instrument to move freely, without the active steering control, in reaction to forces exerted against the medical instrument by a wall of the anatomic passageway after axial movement of the medical instrument is detected by the medical system and exceeds a second threshold value in a retraction direction. At least one of the first or second threshold values comprises a velocity threshold value.