Abstract:
Shared spectrum operation is disclosed for sharing spectrum among multiple wireless deployments. Coordination procedures between and among 2nd and 3rd Tier deployments include the use of beacons transmitted by the 2nd Tier for clearing access to spectrum occupied by 3rd Tier users and multiple 3rd Tier deployments sharing resources using a group-listen before talk (LBT) protocol, rather than a per-node LBT protocol. The 2nd Tier beacon signals are transmitted to alert 3rd Tier users of their presence, which, upon detection, will leave the particular spectrum within a predetermined time. For the shared LBT protocol, the 3rd Tier deployments share the channel with each other through an LBT with random backoff, in which the start time of clear channel assessment (CCA) procedure and the random backoff values are synchronized among nodes of the same deployment.
Abstract:
Various aspects of the disclosure provide for apparatus, methods, and software for implementing a time division duplex (TDD) wireless communication system that can utilize configurable delays to relax data processing timelines when needed. By implementing these configurable delays, very high data rates may be accommodated at the same time as lower data rates for devices that may have reduced or lesser processing capabilities.
Abstract:
Methods, systems, and devices are described for wireless communication at a UE. A base station may select a hybrid pilot configuration including a relatively sparse periodic pilot and a dense pilot embedded in one or more symbols of a low latency burst. A user equipment (UE) may generate a long term statistical average channel estimate based on the periodic pilot and an instantaneous channel estimate (e.g., for demodulation) based on the dense pilot embedded in the low latency burst. The UE may refine the instantaneous channel estimate by converting a control channel embedded with the burst. In some instances, the base station may embed the dense pilots in the first symbol of a burst and transmit subsequent low latency symbols with a reduced density pilot (or without pilot tones).
Abstract:
Techniques are described for wireless communications. A first subframe structure having a first subframe duration for communicating in a first carrier may be determined. A second subframe structure having a second subframe duration for communicating in a second carrier may also be determined. At least the second subframe structure having the second subframe duration may be used to communicate with at least one node.
Abstract:
Systems and techniques are disclosed to manage coexistence of wireless technologies, including 5G unlicensed transmissions, with 802.11 transmissions in the unlicensed band. Aspects of the present disclosure include channel selection and 802.11 traffic monitoring and coordinated access. The systems and techniques include implementing a dynamic duty cycle on a selected channel of an unlicensed 802.11 band and dynamically varying the duty cycle based on traffic load on the selected channel. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Systems and methodologies are described that facilitate transmitting access point types and/or restricted association parameters using broadcast signals, such as beacons, pilot signals, etc. The type or restricted association information can be indicated by one or more intrinsic aspects of the signal, such as specified parameters. In addition, the type or information can be indicated by one or more extrinsic signal aspects, such as frequency, interval, periodicity, etc. Using this information, a mobile device can determine whether an access point implements restricted association. If so, the mobile device can request an access point or related group identifier before determining whether to establish connection therewith. The identifier can be verified against a list of accessible access points and/or groups to make the determination.
Abstract:
Methods, systems, and devices are described for wireless communication. A first device, such as a user equipment (UE) may be configured with a peak data rate that corresponds to the radio frequency (RF) capacity of a modem and a sustained data rate that corresponds to the baseband capacity. The first device may receive a set of data blocks during a transmission burst from a second device. The quantity of data blocks in the burst may be based on the peak data rate. The first device may store time domain samples or frequency tones for the data and then power down the RF components for an interval based on how long it will take to process the data. The first device may then process the data at the sustained data rate. After the rest interval, the first device may power up the RF components and receive another burst of data.
Abstract:
In an aspect of the disclosure, a method, a computer program product, and an apparatus are provided. The method may be performed by a subordinate entity. The subordinate entity receives a transmission from the scheduling entity in a data portion of the subframe. The subordinate entity processes, in the subframe, at least a part of the transmission. The subordinate entity then determines whether to send an acknowledgment (ACK) signal for the transmission, the ACK signal to be transmitted in an ACK portion of the subframe before a remaining part of the transmission is processed, and sends the ACK signal to the scheduling entity in the ACK portion of the subframe based on the determination. The data portion and the ACK portion are contained in the subframe.
Abstract:
Techniques are described for wireless communication. One method includes monitoring, by a first base station of a first operator, for uplink configuration information and downlink configuration information associated with a second base station of at least one second operator; identifying a transmission timing of one or more uplink transmissions to the second base station of the at least one second operator based at least in part on the uplink configuration information; and prohibiting access to an unlicensed radio frequency spectrum band by the first base station of the first operator during the identified transmission timing of the one or more uplink transmissions. Transmissions of the second base station of the at least one second operator in the unlicensed radio frequency spectrum band may be asynchronous to transmissions of the first base station of the first operator in the unlicensed radio frequency spectrum band.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The method includes scheduling at a scheduling entity, a first frame for transmission over a wireless network that supports time division duplexing (TDD), where the first frame includes a first duplex symbol that includes a first bandwidth to be used for uplink transmission to the scheduling entity and a second bandwidth to be used for downlink transmission from the scheduling entity, and using the second bandwidth to transmit scheduling information while the first frame is being transmitted. The scheduling information may be related to a second frame that is scheduled to be transmitted immediately after the first frame. The scheduling information includes an uplink grant or a downlink grant.