Abstract:
A data object is received from a host and stored on a storage compute device. A first mathematical operation is performed on the data object via the storage compute device. An update from the host is received and stored on the storage compute device. The update data is stored separately from the data object and includes a portion of the data object that has subsequently changed. A second mathematical operation is performed on a changed version of the data object using the update data.
Abstract:
A definition is received of at least one data object and a compute object from a host at a storage compute device. A first key is associated with the at least one data object and a second key is associated with the compute object. A command is received from the host to perform a computation that links the first and second keys. The computation is defined by the compute object and acts on the data object. The computation is performed via the storage compute device using the compute object and the data object in response to the command.
Abstract:
A first data set is written to first memory units identified as having a higher data reliability and a second data set is written to second memory units identified as having a lower data reliability than the first memory units. In some cases, the second data set may include metadata or redundancy information that is useful to aid in reading and/or decoding the first data set. The act of writing the second data set increases the data reliability of the first data set. The second data set may be a null pattern, such as all erased bits.
Abstract:
Method and apparatus for managing data in a memory, such as a flash memory. In accordance with some embodiments, a memory module has a plurality of solid-state non-volatile memory cells. A controller communicates a first command having address information and a first operation code. The first operation code identifies a first action to be taken by the memory module in relation to the address information. The controller subsequently communicates a second command having a second operation code without corresponding address information. The memory module takes a second action identified by the second command using the address information from the first command.
Abstract:
Method and apparatus for managing data in a memory. In accordance with some embodiments, a non-volatile (NV) buffer is adapted to store input write data having a selected logical address. A write circuit is adapted to transfer a copy of the input write data to an NV main memory while retaining the stored input write data in the NV buffer. A verify circuit is adapted to perform a verify operation at the conclusion of a predetermined elapsed time interval to verify successful transfer of the copy of the input write data to the NV main memory. The input write data are retained in the NV buffer until successful transfer is verified.
Abstract:
Method and apparatus for managing data in a memory, such as a flash memory. In accordance with some embodiments, a memory module has a plurality of solid-state non-volatile memory cells. A controller communicates a first command having address information and a first operation code. The first operation code identifies a first action to be taken by the memory module in relation to the address information. The controller subsequently communicates a second command having a second operation code without corresponding address information. The memory module takes a second action identified by the second command using the address information from the first command.
Abstract:
Two or more workload indicators affecting a memory cell of a resistance-based, non-volatile memory are measured. The two or more workload indicators are applied to a transfer function that predicts a resistance shift and/or resistance noise variance in response to the two or more workload indicators. A result of the transfer function is applied to shift and/or determine a threshold resistance used for at least one of a program operation and a read operation affecting the memory cell. An error rate of the memory cell is reduced as a result.
Abstract:
Various embodiments may generally be directed to a variable resistance data storage device and a method of managing the device. A data storage device may have at least a controller configured to re-characterize at least one variable resistance memory cell in response to an identified variance from a predetermined resistance threshold.
Abstract:
An incremental signal is defined that includes at least one of a duration and a peak voltage that is less than a respective minimum programming time or minimum programming voltage step of a resistive memory element. A characterization procedure is repeatedly performed that at least involves: applying a signal to the memory element, the signal being incremented by the incremental signal during each subsequent application; measuring a first resistance of the memory element in response to the signal; and c) measuring a second resistance of the memory element after a time period has elapsed from the measurement of the first resistance with no programming signal applied. In response to the first and second resistance measurements of the characterization procedure, a characterization parameter of the memory element is formed.
Abstract:
Method and apparatus for managing data in a memory. In accordance with some embodiments, metadata updates are stored in a first tier of a a multi-tier non-volatile memory structure responsive to access operations associated with data objects in the memory structure. The stored metadata updates are logged in a second, lower tier of the memory structure. The stored metadata updates are further migrated to a different location within the first tier responsive to an accumulated count of said access operations.