Abstract:
A method of medical treatment of the prostate provides an ablation apparatus. The ablation apparatus includes a cannula, an electrode at least partially positioned in the cannula, and an insulation sleeve positioned in a surrounding relationship to at least a portion of the electrode. A distal end of the cannula is positioned in a rectum of a patient. The distal end of the cannula is advanced through a rectal wall of the rectum. A distal end of the electrode if advanced from the cannula into the prostate. Electromagnetic energy is delivered from the electrode to the prostate and an ablation zone is created in the prostate.
Abstract:
An apparatus for ablating at least a portion of an interior of a body structure includes a catheter with a catheter interior and a port formed in a body structure of the catheter. An ablation energy delivery device is at least partially positioned in the catheter interior. The ablation energy delivery device is configured to be advanced through the port into the interior of the body structure to a selected tissue site and deliver an ablation energy to the selected site. The ablation energy delivery device is configured to be coupled to an ablation energy source. A sensor is coupled to the ablation energy source. The sensor is positionable in the interior of the body structure and measures an impedance of at least a portion of the selected tissue site. A conductive medium introduction member is coupled to a source of a conductive medium and the catheter. A feedback control means is coupled to the sensor and the conductive medium source. The feedback control means provides a controlled delivery of the conductive medium to the selected tissue site in response to a level of measured impedance. A cable coupled to the ablation energy delivery device.
Abstract:
A transurethral needle ablation device for use with the human hand for radio frequency ablation of a target volume in the tissue of a prostate of a human male having a bladder with a base and a penis with a urethra therein formed by a urethral wall extending into the base of the bladder along a longitudinal axis with the tissue of the prostate surrounding the urethra near the base of the bladder. The device comprises a bridge having proximal and distal extremities and having a passage therein extending from the proximal extremity to the distal extremity. A sheath having proximal and distal extremities is secured to the bridge and has a passageway therein in communication with the passage in the bridge. The sheath is sized so that it can enter the urethra and has a length so that when its distal extremity is in the vicinity of the prostate, the proximal extremity is outside the urethra. A disposable needle assembly having proximal and distal extremities is removably mounted in the passage in the bridge and extends through the passageway in the sheath. The needle assembly includes at least one needle electrode and an insulating sleeve coaxially disposed on the needle electrode. The proximal extremity of the needle assembly is caused to be moved sideways at an angle with respect to the longitudinal axis to face the urethral wall. A mechanism is carried by the proximal extremity of the needle assembly and the bridge for causing advancement of the needle electrode and the insulation sleeve thereon through the urethral wall and into the target volume in the tissue of the prostate with a portion of the electrode being free of the insulation but with the insulation extending through the urethral wall.
Abstract:
An apparatus for treating air way obstructions, includes a first arm including a proximal end and a distal end, the first arm distal end is inserted into the throat and positioned adjacent to a back surface of the tongue. A second arm has a proximal end and a distal end. The second arm is positioned under the jaw. A coupling member couples the first arm with the second arm, permitting rotational movement of each arm about a longitudinal axis of the coupling member. A plurality of RF electrodes are positioned in the first arm. The plurality of RF electrodes are advanced into the back of the tongue and retracted out of the tongue and into the first arm, ablating a selected area of the back of the tongue.
Abstract:
A stent for introduction into a portion of a urethra in a body of a patient. The urethra extends through a prostate and is formed by a wall having a diameter. The stent includes a longitudinally-extending body made from a material adapted for absorption by the body of the patient. The longitudinally-extending body has an expanded condition in which the body has a predetermined diameter greater than the diameter of the portion of the urethra extending through the prostate. The longitudinally-extending body is formed with a plurality of coils along the length thereof adapted to engage the wall of the urethra when the longitudinally-extending body is in the expanded condition. The longitudinally-extending body is provided with spaces between the coils to permit the wall of the urethra to extend therein and serve to anchor the longitudinally-extending body to the wall.
Abstract:
An RF treatment system includes first and second catheters with first and second needle electrodes positioned at least partially in lumens of the first and second catheters. Each electrode is surround by a insulator sleeve which is slideable along the electrode and defines an ablation surface. An RF power source is coupled to the first and second needle electrodes. The electrodes provide bipolar RF ablation between the two, defining an ablation volume. A deflectable introducer has a laterally deflectable distal end and an ablation volume temperature sensor positioned at the distal end. The deflectable introducer is advanced in and out of the electrodes distal ends to measure a temperature of tissue in the ablation volume. The treatment system can include more than two electrodes, such as two pairs of electrodes. Further, the system can include a needle electrode extension with a laterally deflectable distal end. The needle electrode extension is positioned in at least one of the distal ends of one of the needle electrodes. It is advanced in and out of the needle electrode distal end to provide monopolar ablation. Additionally, the RF treatment system provides for the introduction of an infusion media, including but not limited to a chemotherapeutic agent, through distribution ports in the needle electrodes, or through one or more infusion devices that can house the needle electrodes and their respective catheters.
Abstract:
A medical probe device comprises a catheter having a stylet guide housing with one or more stylet ports in a side wall thereof and guide means for directing a flexible stylet outward through the stylet port and through intervening tissue at a preselected, adjustable angle to a target tissue. The total catheter assembly includes a stylet guide lumen communicating with the stylet port and a stylet positioned in said stylet guide lumen for longitudinal movement from the port through intervening tissue to a target tissue. The stylet can be an electrical conductor enclosed within a non-conductive layer, the electrical conductor being a radiofrequency electrode. Preferably, the non-conductive layer is a sleeve which is axially moveable on the electrical conductor to expose a selected portion of the electrical conductor surface in the target tissue. The stylet can also be a microwave antenna. The stylet can also be a hollow tube for delivering treatment fluid to the target tissue. It can also include a fiber optic cable for laser treatment. The catheter can include one or more inflatable balloons located adjacent to the stylet port for anchoring the catheter or dilation. Ultrasound transducers and temperature sensors can be attached to the probe end and/or stylet.
Abstract:
A medical probe device of this invention comprising a catheter having a control end and a probe end. The probe end includes a stylet guide housing having at least one stylet port and stylet guide means for directing a flexible stylet outward through at least one stylet port and through intervening tissue to targeted tissues. A stylet is positioned in at least one of said stylet guide means, the stylet comprising a non-conductive sleeve having a RF electrode lumen and an optional a fluid supply lumen and a temperature sensor lumen therein. At least one portion of an opposed surface of the electrode lumen and the electrode can be spaced apart to define a liquid supply passageway for delivery of medicament liquid. The RF electrode enclosed within the non-conductive sleeve has a distal length optionally having at least one current focusing groove means thereon and a distal tip shaped to focus current crowding on its terminal end, whereby Rf current passing therefrom into surrounding tissue forms a lesion extending outward from the groove and tip. The focusing groove means can be a plurality of annular focusing grooves or a spiral focusing groove thereon.
Abstract:
A tissue ablation apparatus includes a delivery catheter with distal and proximal ends. A handle is attached to the proximal end of the delivery catheter. At least partially positioned in the delivery catheter is an electrode deployment device. The electrode deployment device includes a plurality of retractable electrodes. Each electrode has a non-deployed state when it is positioned in the delivery catheter. Additionally, each electrode has a distended deployed state when it is advanced out of the delivery catheter distal end. The deployed electrodes define an ablation volume. Each deployed electrode has a first section with a first radius of curvature. The first section is located near the distal end of the delivery catheter. A second section of the deployed electrode extends beyond the first section, and has a second radius of curvature, or a substantially linear geometry.
Abstract:
A medical probe device for treatment of the prostate of a human male having a bladder with a base with a urethra formed by a urethral wall extending into the base of the bladder with the prostate having tissue surrounding the urethra near the base of the bladder with a catheter having a control end and a probe end and a passageway extending from the control end to the probe end along a longitudinal axis. A flexible stylet assembly is slidably mounted in the passageway in the catheter and has a distal extremity. The stylet assembly includes a conductive electrode and a sleeve of insulating material surrounding the conductive electrode and permitting a predetermined portion of the conductive electrode to be exposed. A control device is secured to the stylet assembly and to the control end of the catheter for causing movement of the distal extremity of the stylet assembly between a retracted position disposed within the passageway and an extended position disposed outwardly from the probe end whereby the stylet assembly can extend through the urethral wall into the tissue of the prostate with the conductive electrode being disposed in the tissue of the prostate and the sleeve being disposed in the urethral wall. A radio frequency generator is coupled to the conductive electrode for supplying radio frequency energy to the conductive electrode for causing ablation of tissue in the prostate while the urethral wall is protected from the radio frequency energy supplied to the electrode.