摘要:
The present invention concerns the application of adsorption gas separation technologies to anaesthesia equipment and falls within the technical domains of adsorption separation units and medical devices. The invention concerns a device and processes for recovering xenon from gas mixtures released from anaesthesia gas machines (1) using xenon as anaesthetic. The purged xenon is collected using a system which includes a shift valve (6), and then separated and purified (38-40). The recycled xenon is then pressurised (31) and reintroduced in the anaesthesia circuit (48) using a shift valve (12). The separation and purification process combines different adsorption separation/purification technologies. The device is external to the anaesthesia gas machine and is compatible with any standard anaesthesia circuit able of perform xenon anaesthesia.
摘要:
This invention relates to an improvement in a process for removing water from a hydride gas, and particularly ammonia, by contacting the hydride gas with a drying agent under conditions for effecting removal of the water. The improvement for significantly reducing the water content to trace levels in said hydride gas resides in the use of at least Group 1 metal oxide and at least one Group 2 metal oxide as a drying agent.
摘要:
A method of separating a mixture of N (N≧2) gases by size exclusion, comprising:contacting the mixture of gases with N−1 gas permeable porous films, each of the N−1 gas permeable porous films being made of a permeable porous material including pores of different sizes, formed with at least one nanostructured compound. wherein the at least one nanostructured compound includes 30% or more polyhedral oligomeric silsequioxane (POSS) by weight: wherein at least one of the N−1 gas permeable porous films has pores which do not allow permeation of at least one of the N gases.
摘要:
A gas recovery system comprising a source of gas having a preselected concentration of a desired component (9), at least one application (1) that adds impurities to said gas, and at least one an adsorption system (6) that purifies said gas to produce a purified gas for re-use in application (1), wherein said at least one adsorption system includes at least one adsorbent bed (A) having at least three layers of adsorbents. A recovery process is also disclosed.
摘要:
According to this process: (a) air is distilled in at least one air distillation apparatus (8) so as to produce a stream of liquid oxygen containing most of the krypton and xenon from the air, and this stream of liquid oxygen is vaporized; (b) a partial oxidation of at least one hydrocarbon is carried out with at least one portion of the gaseous oxygen obtained in step (a), so as to produce a syngas containing at most 0.1 ppm mol of oxygen; and (c) constituents other than krypton and xenon are removed from the syngas.
摘要:
The invention relates to mixed phase materials for the preparation of catalytic membranes which exhibit ionic and electronic conduction and which exhibit improved mechanical strength compared to single phase ionic and electronic conducting materials. The mixed phase materials are useful for forming gas impermeable membranes either as dense ceramic membranes or as dense thin films coated onto porous substrates. The membranes and materials of this invention are useful in catalytic membrane reactors in a variety of applications including synthesis gas production. One or more crystalline second phases are present in the mixed phase material at a level sufficient to enhance the mechanical strength of the mixture to provide membranes for practical application in CMRs.
摘要:
A combined method of separating oxygen and for generating power. Oxygen containing stream is compressed and oxygen is separated from the stream into permeate oxygen and an oxygen depleted retentate in an oxygen transport membrane unit. An anode side of the oxygen transport membrane unit is purged with a pressurized purge stream made up of pressurized, superheated steam. A pressurized oxygen product stream is discharged from the anode side of the oxygen transport membrane, the product comprising permeated oxygen and steam. The pressurized oxygen product stream is cooled against itself or the oxygen containing stream. The pressurized oxygen product stream is condensed by indirect heat transfer with a process fluid that boils to allow power to be extracted from the process fluid. Condensed water is separated from the oxygen product stream and separated oxygen is extracted as a product at pressure.
摘要:
The invention relates to mixed phase materials for the preparation of catalytic membranes which exhibit ionic and electronic conduction and which exhibit improved mechanical strength compared to single phase ionic and electronic conducting materials. The mixed phase materials are useful for forming gas impermeable membranes either as dense ceramic membranes or as dense thin films coated onto porous substrates. The membranes and materials of this invention are useful in catalytic membrane reactors in a variety of applications including synthesis gas production. One or more crystalline second phases are present in the mixed phase material at a level sufficient to enhance the mechanical strength of the mixture to provide membranes for practical application in CMRs.
摘要:
The present invention is a two stage PSA process for producing high purity oxygen from a feed air stream. Water, carbon dioxide and nitrogen are removed in a first stage. An oxygen selective adsorbent is used to adsorb oxygen in the second stage. High purity oxygen product is recovered during regeneration of the second stage. Importantly, the high purity of the oxygen product is achieved without inclusion of an oxygen rinse step in the process cycle. The high purity oxygen product is obtained by collecting the middle cut of the second stage effluent stream during regeneration.
摘要:
The invention relates to mixed phase materials for the preparation of catalytic membranes which exhibit ionic and electronic conduction and which exhibit improved mechanical strength compared to single phase ionic and electronic conducting materials. The mixed phase materials are useful for forming gas impermeable membranes either as dense ceramic membranes or as dense thin films coated onto porous substrates. The membranes and materials of this invention are useful in catalytic membrane reactors in a variety of applications including synthesis gas production. One or more crystalline second phases are present in the mixed phase material at a level sufficient to enhance the mechanical strength of the mixture to provide membranes for practical application in CMRs.