Abstract:
A sample having a specific optical path length of 1 to 15 mm is irradiated with near infrared of two or more wavelengths selected from 700 to 1200 nm to determine constituents of dairy products. Preferably, a pair of specific wavelengths comprise a first wavelength having a high correlation with a target constituent and a second wavelength having a low correlation with the target constituent or comprise wavelengths both having high correlations with the target constitutent. Quantities of near infrared of these two specific wavelengths transmitted by the sample are measured to determine absorbencies and a multiple linear regression equation is used to calculate the constituent on the basis of the absorbencies.
Abstract:
The energy transfer efficiency of a donor-acceptor pair of fluorescent dyes can be determined by first measuring the fluorescence and absorption spectra of donor-protein, acceptor-protein, mixture of donor-protein and acceptor-protein, and donor-acceptor-protein conjugates, then separating the respective spectra into their respective donor-protein complex and acceptor-protein complex components using multiple linear regression, and then determining the transfer efficiency on the basis of the quenching of the donor fluorescence based on the spectral data thus obtained.
Abstract:
A spectrometric method for determining a physical or a chemical target quantity by performing the photometric measurement at plural wavelengths predetermined which includes the steps of measuring variation vectors by varying error variation factors by predetermined units which are defined in a space having a dimension equal to the number of the plural wavelengths, seeking for a subspace of the space which is orthogonal to all variation vectors, performing the photometric measurement for samples having known values of the target quantity, projecting vectors obtained from the photometric measurement for samples on the subspace and calculating a calibration curve using data obtained by the projection on the subspace.
Abstract:
A method for chemistry systems analysis to identify the performance of the functional components of the system, specifically, those of volumes dispensed and optical linearity. Employing a linear regression comparison between predetermined absorbance values, calculated from Beer's Law, and absorbance values obtained from the optical system under test, a value correction constant derived from the regression comparison may be applied to all subsequent absorbance values. Absorbance values, obtained from the optical system as a result of analyzing dilutions are by the pipetting system of material having a greater concentration but the same molar absorbtivity constant as the material used for the linearity evaluation, can be corrected to a value that does not reflect any optical system bias, and may be considered as the divident for the function of converting absorbance values into volumes dispensed. The divisor of the convertion function will be derived from the predetermined absorbance of the concentrate, using Beer's Law, and dividing that by the total volume requested by the volumes evaluation, leaving an absorbance value that equals a lul delivery. The volume dispensed by the pipetting system may then be calculated by dividing the corrected absorbance value by the lul absorbance value, yielding a quotient identifying the actual volume delivered.
Abstract:
An apparatus and method for determining the photosynthetic activity of a plant by determining the chlorophyll fluorescence of the plant is provided. The apparatus includes a light impermeable housing, a light to illuminate the housing, a light intensity in the housing and to adjust the light intensity controller. The light intensity may be between zero and 700 micromoles of photons per square meter per second. The monitor may be a photodiode protected by light filters which permit only light of wavelengths corresponding to plant fluorescence emission to pass to the photodiode. A computer analysis of the data obtained, corrects for Dark and Straylight signals in the housing and normalizes the data by correcting for the Fo fluorescence. A method of estimating Fo is provided which includes illuminating a light impermeable chamber housing a plant with light of a pre-determined intensity, measuring the fluorescence emission, determining the slope of a first regression line prior to full opening of the shutter; determining the slope of a second regression line of measurements after the shutter is fully opened and determining the intersecting point between these two lines. A method of determining the corrected and normalized fluorescence emissions from a plant is provided.
Abstract:
A method for sorting flexible polyurethane foams including: a) providing two or more calibration samples of conventional flexible polyurethane foams, two or more calibration samples of high resilience (HR) flexible polyurethane foams, and two or more calibration samples of viscoelastic flexible polyurethane foams, and obtaining a mid-infrared (MIR) spectrum of each calibration sample; b) carrying out a spectral pre-processing of the spectra of all the calibration samples and, then a first PCA to define a first library; c) carrying out a spectral pre-processing of the infrared spectra of conventional and HR calibration samples and, then a second PCA to define a second library; d) obtaining the MIR spectrum of a sample of polyurethane foam and, based on the first and second libraries, classifying the sample of polyurethane foam as a conventional, HR or viscoelastic polyurethane foam, or as a foam that is neither a conventional, a HR or a viscoelastic polyurethane foam.
Abstract:
A method of determining the identity and concentration of a target analyte present in a biological sample includes: introducing a first target analyte into a hollow core of an optical fiber; introducing a first reference calibrant into the hollow core of the optical fiber; transmitting light from a laser light source through the hollow core of the optical fiber and the first target analyte to generate a first Raman anti-Stokes analyte emission corresponding to the first target analyte; receiving the first Raman anti-Stokes analyte emission at a spectral analysis system optically coupled to the optical fiber; and deriving Raman anti-Stokes spectral peaks or spectra of the first target analyte at the spectral analysis system based on the first Raman anti-Stokes analyte emission.
Abstract:
A monitoring system includes a spectroscopic probe in fluid connection with a fracturing fluid, reference spectra obtained from one or more fracturing fluid components, and a computer in communication with the spectroscopic probe. The computer includes a predictive model generated from the reference spectra. The computer also includes instructions to compare spectroscopic data obtained from the spectroscopic probe with the predictive model. A modified well fracturing system includes a monitoring system located at a surface location of a hydrocarbon-bearing reservoir and a surface pump in fluid connection with the fracturing fluid source and a wellbore of the hydrocarbon-bearing reservoir. A method for monitoring a fracturing fluid is also described.
Abstract:
The disclosure features methods that include obtaining a vibrational spectrum of a solution in a biological manufacturing system, analyzing the vibrational spectrum using a first chemometrics model to determine a value of a first quality attribute associated with the solution, analyzing the vibrational spectrum using a second chemometrics model to determine a value of a second quality attribute associated with the solution, and adjusting at least one parameter of a purification unit of the biological manufacturing system based on at least one of the values of the first and second quality attributes.
Abstract:
Provided is a slag component analysis method capable of quickly and accurately measuring slag components generated during refining of molten iron. The method comprises: irradiating a surface of slag to be analyzed with a pulse laser a plurality of times to turn part of the slag into plasma; dispersing excitation light obtained from the slag turned into plasma and acquiring an emission spectrum of an element contained in the slag per one pulse laser irradiation or per a plurality of pulse laser irradiations; and deriving a target component concentration or component amount ratio from the acquired emission spectrum, wherein the slag to be analyzed is slag generated in a converter-type refining furnace, and in the process of turning part of the slag into plasma, the pulse laser is applied from a side of the converter-type refining furnace tilted to remove the slag generated in the converter-type refining furnace.