Abstract:
Apparatus and methods for generating a drive signal of a switching signal are disclosed. A first circuit receives an oscillating reference signal, a first compensation signal, a second compensation signal, and a third compensation signal. The first compensation signal is indicative of an error between an output voltage of a power converter and a reference voltage. The second compensation signal is indicative of the error relative to a threshold. The third compensation signal is indicative of an output current of the power converter. The first circuit generates a comparison signal having a waveform including pulses having durations based at least partly on a combination of the periodic reference signal, the first compensation signal, the second compensation signal, and the third compensation signal. A second circuit receives a clock signal and the comparison signal and generates a drive signal for activation and deactivation of a driver transistor.
Abstract:
A ping pong comparator voltage monitoring circuit which includes first and second comparators having inputs connected to a voltage Vin to be monitored, and second inputs connected to first and second nodes, respectively. A multiplexer alternately couples the first and second comparator outputs to an output in response to a periodic control signal. A ground-referenced voltage Vref1 is provided at a third node and a voltage Vref2 referenced to Vref1 is at a fourth node. A hysteresis hyst1 is switchably connected between the third and first nodes, and a hysteresis hyst2 is switchably connected between the fourth and second nodes. Hyst1 and hyst2 are switched in when the mux output toggles due to a rising Vin, and are switched out when the mux output toggles due to a falling Vin.
Abstract:
In one aspect, this disclosure relates to a method of controlling current output from a switching regulator to a load via an inductor. Inductor current information can be sampled at a peak level, such as just before a transistor configured to cause current to flow through the inductor is turned off. The sampled inductor current can be compared with a reference current, and a current limit threshold can be adjusted based on the comparison. The output current of the switching regulator can be controlled based on a comparison of the current limit threshold with an indicator of current flowing through the inductor. This method can accurately and efficiently limit current in a switching regulator.
Abstract:
Backside recesses in a base member host components, such as sensors or circuits, to allow closer proximity and efficient use of the surface space and internal volume of the base member. Recesses may include covers, caps, filters and lenses, and may be in communication with circuits on the frontside of the base member, or with circuits on an active backside cap. An array of recessed components may a form complete, compact sensor system.
Abstract:
According to one example embodiment, a direct memory access (DMA) engine and buffer is disclosed. The vector buffer may be explicitly programmable, and may include advanced logic for reordering non-unity-stride vector data. An example MEMCPY instruction may provide an access request to the DMA buffer, which may then service the request asynchronously. Bitwise guards are set over memory in use, and cleared as each bit is read.
Abstract:
A wireless charging network system is disclosed that includes wirelessly charged sensor nodes. The wireless network system can include a gateway node configured to aggregate data from sensor nodes within a coverage area of the gateway node. The gateway node is further configured to wirelessly transmit power to the sensor nodes using a beamformed signal, wherein the gateway node adjusts the beamformed signal to maximize wireless power transfer to sensor nodes within each sector of the coverage area. Location information can be used to adjust the beamformed signal. For example, in various embodiments, the gateway node includes a beamformer sector profile table that defines channel adaptive beam profiles for the beamformed signal for each sector of the coverage area. The gateway node can use location information to define the beam profiles.
Abstract:
Delta-sigma modulators do not handle overload well, and often become unstable if the input goes beyond the full-scale range of the modulator. To provide overload protection, an improved technique embeds an overload detector in the delta sigma modulator. When an overload condition is detected, coefficient(s) of the delta sigma modulator is adjusted to accommodate for the overloaded input. The improved technique advantageously allows the delta sigma modulator to handle overload gracefully without reset, and offers greater dynamic range at reduced resolution. Furthermore, the coefficient(s) of the delta sigma modulator can be adjusted in such a way to ensure the noise transfer function is not affected.
Abstract:
At least one embodiment provides a method for a nanopower boost regulator to startup from an ultra-low-voltage (such as 0.3V˜0.5V) for energy harvesting applications. The method does not necessarily require a special process or any external components such as mechanical switches. The startup circuit can include an asynchronous boost circuit to charge up an output with stacked power NMOS transistors, a ring oscillator, and/or a charge pump, along with accompanying circuitry.
Abstract:
This application discusses, among other things apparatus and methods for a voltage boost circuit. In an example, a voltage boost circuit can include first and second inverters, sharing a first supply node, and sharing a second supply node, a first charge transfer capacitor, configured to couple a first clock signal to the first inverter output, a second charge transfer capacitor, configured to couple a second clock signal to the second inverter output, the second clock signal being out-of-phase with the first clock signal, a first gate drive capacitor, configured to couple the first clock signal to the second inverter input, and a second gate drive capacitor, configured to couple the second clock signal to the first inverter input.
Abstract:
In one example, there is disclosed herein a processor configured for interruptible atomic exclusive memory operations. For example, a load exclusive (LDEX) may be followed by a store exclusive (STREX), with the two together forming an atom. To facilitate timely handling of interrupts, the STREX operation is split into two parts. The STREX_INIT is not interruptible but has a determinate execution time because it takes a fixed number of clock cycles. The STREX_INIT sends the value out to the memory bus. It is followed by a STREX_SYNC operation that polls a flag for whether a return value is available. STREX_SYNC is interruptible, and methods are disclosed for determining whether, upon return from an interrupt, atomicity of the operation has been broken. If atomicity is broken, the instruction fails, while if atomicity is preserved, the instruction completes.