Abstract:
A wireless testing system includes a main computer that controls a wireless module, a rotary mechanism, a measurement device, and an antenna. The rotary mechanism includes a rotatable seat controlled by the main computer to rotate about a first rotation axis, a support arm disposed on the rotatable seat, and a module rotating arm disposed on the support arm and positioning the wireless module at or in the vicinity of the first rotation axis. The module rotating arm is controlled by the main computer to rotate the wireless module about a second rotation axis. The antenna is substantially directed toward the wireless module. The measurement device is controlled by the main computer to control the antenna to receive or transmit a wireless signal.
Abstract:
A driving circuit includes: a switching element having a first terminal to receive an input voltage, and a second terminal; an inductor coupled to the second terminal of the switching element; a switch and a current sensing element coupled in series to the second terminal of the switching element; and a control module compensating a voltage sensed by the current sensing element based on at least one of the input voltage and an output voltage across the switching element and the inductor to generate a compensated signal, and switching the switch from an ON state to an OFF state when the compensated signal exceeds a reference threshold for a delay time.
Abstract:
A white light emitting device includes an LED chip capable of emitting light with a peak wavelength of 390 to 430 nm, and a wavelength conversion layer including first, second and third fluorescent materials. The first fluorescent material is capable of being excited to emit light with a peak wavelength of 450 to 470 nm. The second fluorescent material is capable of being excited to emit light with a peak wavelength of 450 to 470 nm. The third fluorescent material is capable of being excited to emit light with a peak wavelength of 630 to 650 nm. Light emitted by the white light emitting device has a color temperature below 5000 K, and a general color rendering index value (Ra) and special color rendering index values (R9-R15) all greater than 90.
Abstract:
An audio transceiver capable of wirelessly receiving source audio data from a multimedia device, and to be coupled to an audio playback device via a USB interface includes a processing unit that makes the audio transceiver appear as a virtual USB storage device to the audio playback device, and that establishes a virtual audio file to be read by the audio playback device. Upon receipt of a file segment request from the audio playback device via the USB interface, the processing unit generates an audio file segment data associated with the source audio data to have a format supported by the audio playback device and transmits the same to the audio playback device as playable audio data via the USB interface.
Abstract:
A direct current voltage conversion device includes a direct current to alternating current converter, a transformer, a first converter switch, a second converter switch and a clamping circuit. The clamping circuit clamps a voltage across the second converter switch to a preset value, and stores energy of a voltage peak across the second converter switch.
Abstract:
An LED package structure includes: an insulating substrate that has a front bonding pad assembly; a dark-colored die-attach adhesive; blue and green LED chips mounted on the front bonding pad assembly via the dark-colored die-attach adhesive; and a dark-colored and light-transmissible encapsulant that is disposed on the insulating substrate and that encapsulates the blue and green LED chips. The encapsulant has a light transmittance that ranges from 7% to 28% for the blue light and has a light transmittance that ranges from 9% to 30% for the green light.
Abstract:
A voice coil motor array module includes a carrier frame defining a plurality of receiving spaces and a plurality of magnet-mounting spaces disposed in pairs and in symmetry around the receiving spaces. Any two adjacent receiving spaces have only one magnet-mounting space therebetween. A plurality of magnetic components are respectively disposed in the magnet-mounting spaces. Each magnet-mounting space receives only one magnetic component. The magnetic components surrounding a corresponding receiving space have same magnetic poles facing each other. A plurality of displacement components are respectively disposed in the receiving spaces. Each displacement component includes a lens carrier and a coil.
Abstract:
A method for manufacturing a housing of an LED display device includes the steps of: (a) filling a first material into a first mold assembly at a first place to form a cover with a plurality of first display holes, followed by moving the cover to a second place, filling a second material into a second mold assembly and the cover to seal one of the plurality of the first display holes via a plurality of first transparent members; and (b) disposing an ink layer on a display side of the cover in such a manner that the ink layer covers the display side of the cover and that the first transparent member in each of the first display holes is exposed from the ink layer.
Abstract:
A power conversion device includes a full-bridge switch circuit, a converter circuit, and a control circuit. The full-bridge switch circuit is operable to convert a direct current input voltage to a converted voltage. The converter circuit converts the converted voltage into a direct current output voltage. The converter circuit includes a resonant inductor, a transformer, a first converter switch, a second converter switch, an output inductor, and an output capacitor. The direct current output voltage is provided across the output capacitor. The control circuit controls the full-bridge switch circuit, the first converter switch and the second converter switch based on the direct current output voltage and a reference voltage.
Abstract:
A liquid crystal display (LCD) system includes an LCD device and an alternating current (AC) adapter. The LCD device includes a video processing module and a light emitting diode (LED) backlight module. The AC adapter includes a backlight driving module and an AC-to-DC (direct current) converting module. The backlight driving module generates a backlight driving signal, and outputs the backlight driving signal to drive the LED backlight module of the LCD device . The AC-to-DC converting module is adapted to convert an AC line voltage into first and second DC voltages, and outputs the first and second DC voltages to power the video processing module of the LCD device and the backlight driving module, respectively.