Abstract:
An apparatus for forming an electrode film mixture can have a first source including a polymer dispersion comprising a liquid and a polymer, a second source including a second component of the electrode film mixture, and a fluidized bed coating apparatus including a first inlet configured to receive from the first source the dispersion, and a second inlet configured to receive from the second source the second component.
Abstract:
This disclosure provides collector plates for an energy storage device, energy storage devices with a collector plate, and methods for manufacturing the same. In one aspect, a collector plate includes a body. One or more apertures extend into the body. The apertures are configured to allow a portion of a free end of a spirally wound current collector of a spirally wound electrode for an energy storage device to extend into the one or more apertures.
Abstract:
An electric double-layer ultracapacitor configured to maintain desired operation at an operating voltage of three volts, where the capacitor includes a housing component, a first and a second current collector, a positive and a negative electrode electrically coupled to one of the first and second current collectors, and a separator positioned between the positive and the negative electrode. At least one of the positive electrode and the negative electrode can include a treated carbon material, where the treated carbon material includes a reduction in a number of hydrogen-containing functional groups, nitrogen-containing functional groups and/or oxygen-containing functional groups.
Abstract:
This disclosure provides systems, methods and apparatus for an energy storage system. In one aspect, the energy storage system includes a controller configured to connect a first capacitor system and a second capacitor system in series with an output of a battery system during a high current demand event such that the voltage of the output of the battery system is supported within the voltage constraints of the output of that battery system.
Abstract:
An energy storage device can include a cathode, an anode, and a separator between the cathode and the anode, and an electrolyte where the electrolyte includes one or more additives and/or solvent components selected from vinylene carbonate (VC), vinyl ethylene carbonate (VEC), dimethylacetamide (DMAc), hydro fluorinated ether branched cyclic carbonate, a hydro fluorinated ether ethylene carbonate (HFEEC), hydro fluorinated ether (HFE), and fluorinated ethylene carbonate (FEC). The electrolyte may include a carbonate based solvent and one or more solvent components and/or one or more of vinylene carbonate (VC), vinyl ethylene carbonate (VEC), dimethylacetamide (DMAc), hydro fluorinated ether branched cyclic carbonate, a hydro fluorinated ether ethylene carbonate (HFEEC), hydro fluorinated ether (HFE), and fluorinated ethylene carbonate (FEC).
Abstract:
An electric double-layer ultracapacitor configured to maintain desired operation at an operating voltage of three volts, where the capacitor includes a housing component, a first and a second current collector, a positive and a negative electrode electrically coupled to one of the first and second current collectors, and a separator positioned between the positive and the negative electrode. At least one of the positive electrode and the negative electrode can include a treated carbon material, where the treated carbon material includes a reduction in a number of hydrogen-containing functional groups, nitrogen-containing functional groups and/or oxygen-containing functional groups.
Abstract:
This disclosure provides systems, methods and apparatus for a combined battery/capacitor energy storage device. The device includes a first device terminal, a second device terminal, a battery connected between the first terminal and the second terminal, and a capacitor connected in parallel with the battery. In one aspect, a rectifier is connected between the first terminal and the capacitor, the rectifier configured to allow substantially unidirectional current flow from the first terminal to the capacitor. In another aspect, a switch is between the capacitor and the first terminal. In another aspect, a current limiter extends between the first terminal and the capacitor.
Abstract:
An energy storage device can include a cathode and an anode, where at least one of the cathode and the anode are made of a polytetrafluoroethylene (PTFE) composite binder material including PTFE and at least one of polyvinylidene fluoride (PVDF), a PVDF co-polymer, and poly(ethylene oxide) (PEO). The energy storage device can be a lithium ion battery, a lithium ion capacitor, and/or any other lithium based energy storage device. The PTFE composite binder material can have a ratio of about 1:1 of PTFE to a non-PTFE component, such a PVDF, PVDF co-polymer and/or PEO.
Abstract:
This disclosure provides systems, methods and apparatus for a engine start system. In one aspect, the engine start system includes: a booster battery selectively connected in parallel with the primary batteries of the engine. The booster battery is disconnected when the battery voltage of the primary batteries is below a first target voltage. The booster battery is connected when the battery voltage of the primary batteries is at or above the second target voltage, or in response to an external input.
Abstract:
An energy storage apparatus can include a plurality of energy storage sub-modules adjacent one another, each of the plurality of energy storage sub-modules including a plurality of prismatic energy storage devices positioned on a carrying tray. An insulator sleeve can surround the plurality of prismatic energy storage devices positioned on the carrying tray and a pair of side plates positioned around the insulator sleeve. A first of the pair of side plates can be placed adjacent a first side of the insulator sleeve and a second of the pair of side plates can be placed adjacent a second opposing side of the insulator sleeve, where at least one of the pair of side plates has a plurality of protrusions distributed across an exterior surface. An air flow generator can be at a distal end of the energy storage apparatus and configure to draw air into and propel air flow through the energy storage apparatus.