Abstract:
A bidirectional switch formed in a substrate includes first and second main vertical thyristors in antiparallel connection. A third auxiliary vertical thyristor has a rear surface layer in common with the rear surface layer of the first thyristor. A peripheral region surrounds the thyristors and connects the rear surface layer to a layer of the same conductivity type of the third thyristor located on the other side of the substrate. A metallization connects the rear surfaces of the first and second thyristors. An insulating structure is located between the rear surface layer of the third thyristor and the metallization. The insulating structure extends under the periphery of the first thyristor. The insulating structure includes a region made of an insulating material and a complementary region made of a semiconductor material.
Abstract:
A circuit can be used for charging a capacitor with an AC voltage. In one embodiment, the circuit includes a capacitor coupled to be charged with the AC voltage. An adjustment is configured to adjust a capacitor charge speed according to a value of the AC voltage. The adjustment circuit includes at least one bipolar transistor coupled to receive a voltage at a base of the bipolar transistor. The voltage is a function of the value of the AC voltage.
Abstract:
A capacitor having a capacitance settable by biasing, including: a series association of a plurality of first capacitive elements between two first terminals defining the capacitor electrodes; and two second terminals of application of bias voltages respectively connected, via resistive elements, to the opposite electrodes of each of the first capacitive elements.
Abstract:
A Schottky diode may include a semiconductor substrate having first and second opposing surfaces, and a buffer layer over the first surface of the semiconductor substrate. The Schottky diode may include a first doped GaN layer over the buffer layer and having first and second opposing surfaces, the second surface of the first doped GaN layer being adjacent the buffer layer, and a second doped GaN layer over the second surface of the first doped GaN layer and having a dopant concentration level less than a dopant concentration level of the first doped GaN layer. The buffer layer, the first doped GaN layer, and the second doped GaN layer may define an opening. The Schottky diode may include a first metallization layer being coupled to the semiconductor substrate and to the first surface of the first doped GaN layer and being in the opening.
Abstract:
A vertical power component including: a silicon substrate of a first conductivity type; on the side of a lower surface of the substrate supporting a single electrode, a lower layer of the second conductivity type; and on the side of an upper surface of the substrate supporting a conduction electrode and a gate electrode, an upper region of the second conductivity type, wherein the component periphery includes, on the lower surface side, a porous silicon insulating ring penetrating into the substrate down to a depth greater than that of the lower layer.
Abstract:
An object containing electronic circuits and a rechargeable cell, wherein the cell is arranged close to a surface of the object, a charge coil being shiftable with respect to the cell between an operating position where it is arranged around the cell and a recharge position where it is axially offset with respect to the cell.
Abstract:
A high-voltage vertical power component including a silicon substrate of a first conductivity type, and a first semiconductor layer of the second conductivity type extending into the silicon substrate from an upper surface of the silicon substrate, wherein the component periphery includes: a porous silicon ring extending into the silicon substrate from the upper surface to a depth deeper than the first layer; and a doped ring of the second conductivity type, extending from a lower surface of the silicon surface to the porous silicon ring.
Abstract:
A thin film capacitor is characterized by forming a lower electrode, coating a composition onto the lower electrode without applying an annealing process having a temperature of greater than 300° C., drying at a predetermined temperature within a range from ambient temperature to 500° C., and calcining at a predetermined temperature within a range of 500 to 800° C. and higher than a drying temperature. The process from coating to calcining is performed the process from coating to calcining once or at least twice, or the process from coating to drying is performed at least twice, and then calcining is performed once. The thickness of the dielectric thin film formed after the first calcining is 20 to 600 nm. The ratio of the thickness of the lower electrode and the thickness of the dielectric thin film formed after the initial calcining step (thickness of lower electrode/thickness of the dielectric thin film) is preferably in the range 0.10 to 15.0.
Abstract:
A distributed-line directional coupler including: a first conductive line between first and second ports intended to convey a signal to be transmitted; and a second conductive line, coupled to the first one, between third and fourth ports, the second line being interrupted approximately at its middle, the two intermediary ends being connected to attenuators.
Abstract:
A method for manufacturing semiconductor chips from a semiconductor wafer, including the steps of: fastening, on a first support frame, a second support frame having outer dimensions smaller than the outer dimensions of the first frame and greater than the inner dimensions of the first frame; arranging the wafer on a surface of a film stretched on the second frame; carrying out wafer processing operations by using equipment capable of receiving the first frame; separating the second frame from the first frame and removing the first frame; and carrying out wafer processing operations by using equipment capable of receiving the second frame.