Abstract:
Systems and methods for monitoring a vehicle determine a baseline wheel rotational speed and wheel rotational speeds of a wheel for different positions along an outer perimeter of the wheel. One or more deviations between the wheel rotational speeds and the baseline wheel rotational speed are determined, and the deviations between the wheel rotational speeds and the baseline wheel rotational speed are correlated with one or more identified positions of the positions along the outer perimeter of the wheel. One or more of damage to the wheel or damage to a drivetrain of the vehicle is identified based at least in part on the one or more deviations being correlated with the one or more identified positions.
Abstract:
A system includes at least one examining module configured to be disposed onboard a vehicle system and a mitigation module. The at least one examining module is configured to identify an identified section of a route being traversed by the vehicle system, with the identified section corresponding to at least one of a potentially damaged section of the route or an actually damaged section of the route. The mitigation module is configured to, responsive to an identification by the at least one examining module of the identified section of the route, automatically perform a mitigation action corresponding to the identified section of the route.
Abstract:
A route examination system and method automatically detect (with an identification unit onboard a vehicle having one or more processors) a location of a break in conductivity of a first route during movement of the vehicle along the first route. The system and method also identify (with the identification unit) one or more of a location of the vehicle on the first route or the first route from among several different routes based at least in part on the location of the break in the conductivity of the first route that is detected.
Abstract:
A method for vehicle control comprises determining a braking capability of a braking system of a vehicle, and modifying application of at least one control parameter by a control system of the vehicle based on the determined braking capability. Braking capability may be determined by activating the braking system of the vehicle to apply a braking force on the vehicle, and concurrently, applying a level of tractive effort of the vehicle that is sufficient to overcome the braking force. The braking capability is determined based on the level of tractive effort.
Abstract:
A method comprises receiving an alarm state from one or more inspection systems that inspects one or more components of a vehicle system. The method then identifies operational parameters of the vehicle system. The operational parameters represent at least one of a current location of the vehicle system, a current terrain over which the vehicle system is currently travelling, an upcoming terrain that the vehicle system is travelling toward, a current moving speed of the vehicle system, a position of one or more controls of the vehicle system, a state of a brake of the vehicle system or an identification of one or more vehicle units in the vehicle system. The method then selects and implements a mitigating action to implement from plural different mitigating actions based on the alarm state and the one or more parameters of the vehicle.
Abstract:
A route examining system includes first and second detection units and an identification unit. The first and second detection units are configured to be disposed onboard a vehicle system traveling along a route having plural conductive tracks. The first and second detection units are disposed at spaced apart locations along a length of the vehicle system. The first and second detection units are configured to monitor one or more electrical characteristics of the conductive tracks in response to an examination signal being electrically injected into at least one of the conductive tracks. The identification unit includes one or more processors configured to determine that a section of the route includes an electrical short responsive to the one or more electrical characteristics monitored by the first and second detection units indicating that the examination signal is received by only one of the first and second detection units.
Abstract:
A system includes a sensor, one or more processors, a transmitter, and a capacitance control structure. The sensor is configured to contact a fluid and measure a characteristic of the fluid. The one or more processors are operably coupled to the sensor. The one or more processors are configured to generate one or more data signals representative of the characteristic of the fluid that is measured by the sensor. The transmitter is operably coupled to the one or more processors. The transmitter is configured to wirelessly communicate the one or more data signals to a remote reader. The capacitance control structure is configured to one or more of reduce or isolate sensor capacitance of the sensor from the one or more processors.
Abstract:
A method includes forming a first schedule for a first vehicle to travel in a transportation network. The first schedule includes a first arrival time of the first vehicle at a scheduled location. The method also includes receiving a first trip plan for the first vehicle from an energy management system. The first trip plan is based on the first schedule and designates at least one of tractive efforts or braking efforts to be provided by the first vehicle to reduce at least one of an amount of energy consumed by the first vehicle or an amount of emissions generated by the first vehicle when the first vehicle travels through the transportation network to the scheduled location. The method further includes determining whether to modify the first schedule to avoid interfering with movement of one or more other vehicles by examining the trip plan for the first vehicle.
Abstract:
A power converter includes a plurality of switches that interconnect first and second input terminals of the power converter with first and second output terminals of the power converter. The switches are switched to convert power from the input terminals to the output terminals. During the switching, voltage spikes are mitigated by a first RLC branch connected from the first input terminal to the first output terminal and by a second RLC branch connected from the second input terminal to the second output terminal.
Abstract:
A method for controlling a vehicle system includes obtaining an off-board-based input speed of a vehicle system traveling along a curved segment of a first route. The off-board-based input speed is obtained from data provided by an off-board device disposed off the vehicle system. The method also includes determining a heading of the vehicle system from the data provided by the off-board device and calculating a curvature of the curved segment of the first route using the off-board-based input speed and the heading of the vehicle system while the vehicle system travels along the curved segment of the first route.